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Chapter 1

Introduction

Granular matter is all around us. For example, much of the food we eat has
at some point been in a granular form; think of rice, sugar, corn or flour.
Dependent on how they are prepared and handled, granular materials can
behave as unusual solids, fluids or gases. The combination of their ability to
show a broad range of behaviors and the relative simplicity of experiments
on granular media make them so attractive from a physicists point of view.
However, the description of granular matter is not only interesting because
of their surprising behavior, but is also of great relevance for the design and
optimization of many industrial processes. The handling and processing of
grains and powders plays an important role in industrial processes such as
mining, agriculture and the production of pharmaceuticals.

Granular media are large collections of macroscopic particles (grains),
sand being an archetypical example [1]. Typical particle sizes are of the
order of 100 µm or more, which means that thermal fluctuations play no
role and ordinary thermodynamic temperature is irrelevant. In this sense,
granular media are athermal. Interactions between the grains are dissipa-
tive: grains in contact experience repulsive and frictional forces, and particle
collisions are inelastic. As a consequence, if no external energy is supplied,
granular media get stuck in a metastable state such as a sand heap. We
know from experience that collectively, granular media can not only behave
as an (unusual) solid, but also as a peculiar liquid or gas. For example, sand
flowing through an hourglass behaves fluid-like, while sand in a strongly
vibrated container is in a gas-like state. In both cases, energy is supplied
externally to overcome the dissipative grain-grain interactions, and clearly
such states are far away from equilibrium.

In this thesis we study the behavior of granular media when they are
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Figure 1.1: Images from two competitive clustering experiments using candy (pic-
tures published in [7]): at relatively strong shaking (f=75 Hz, a=1.25 mm) the
mixture clusters in compartment A initially containing mainly large particles. At
mild shaking (f=60 Hz, a=1.25 mm) they cluster in the other compartment, ini-
tially dominated by the smaller particles.

driven by vibrations, by impact or by applying external shear forces. The
first set of experiments considers clustering behavior of compartmentalized
granular gases, the second set studies the impact of a heavy sphere (“me-
teor”) on a loose bed of very fine sand, and the final experiments deal with
inhomogeneous velocity profiles in sheared dense granular materials.

The clustering behavior of compartmentalized granular gases is studied
in Chapters 2-4. When grains in a single container are vibrated sufficiently
strong, they lose contact and start to bounce around; this we refer to as a
granular gas. It is customary then to define the granular temperature as the
mean kinetic energy of the particles. The external energy that is supplied to
the grains when they collide with the moving container is dissipated during
grain collisions. As we will discuss in Chapter 2 in more detail, such gas-like
states are prone to clustering [2, 3] . This is because in locally “cold”,
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Figure 1.2: Jet created when a solid sphere impacts on loosely packed, fine sand.
Notice that the maximum height of the jet exceeds the release height.

dense regions, grain collisions are more frequent than in “hot” regions, so
that cold regions cool faster than hot regions, leading to instabilities. In
Chapter 3-4 we discuss this clustering instability in a compartmentalized
system: when two connected grain-filled compartments are vibrated, clus-
tering occurs whereby most grains cluster in one of the compartments and
end up being “cold”. The transition between this clustered state and the
state in which both compartments are equally dense and hot can be tuned
by parameters such as shaking strength, size and location of the hole where
particle exchange takes place. For large amounts of grains this clustering
can be described quite well with a simple model in which the order parame-
ter basically represents the particle densities in the container. However, for
small amounts of grains, fluctuations in the particle exchange between the
two compartments starts to play an important role. This is incorporated
into the simple model by an additional noise term. This noise is character-
ized and studied by means of numerical simulations in Chapter 3. We find
that the noise is approximately Gaussian, and for high noise levels, i.e. for
small number of grains, it is able to break down the mean-field behavior of
the transition between the uniform and clustered states [4].

Granular media that consist of mixtures of strongly different grains, for
example grains of different size, are difficult to mix; in fact, in many situ-
ations size-segregation takes place. A famous example is the “Brazil Nut”
effect, where a large particle (the nut) surrounded by smaller ones rises to
the surface when the whole assembly is vibrated [5]. One may also encounter
(co-axial) segregation in rotating drums, in which sharply separated bands
of similar-sized particles form. When these are colored differently, one can
observe beautiful “snake” patterns [6]. In Chapter 4 we find that size seg-
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Figure 1.3: Frames showing the surface flow of a sheared granular material (1 mm
glass beads), where a line of black particles is added to illustrate the grain motion.
A narrow shear band is created where the material deforms, while the rest of the
material remains solid-like.

regation also plays a role when two connected boxes filled with a bidisperse
mixture of grains are vibrated. Dependent on the shaking strength the clus-
tering can be directed either towards the compartment initially containing
mainly small particles or to the one containing mainly large particles [7–9].

An example of bidisperse clustering is shown in Figure 1.1, where a
mixture of candies (“Tic-Tac’s” and “Salmiakbollen”), starting out from
the same initial distribution, cluster in compartment A or B depending on
the shaking strength.

In Chapter 5 we study the jet that occurs when we drop a heavy ball in
a very loose packing of fine sand (see Figure 1.2). Upon impact a crater is
formed which collapses due to the sand pressure and an upward jet emerges.
For high impact velocities air is entrained beneath the surface, which slowly
rises to the surface causing a granular eruption [10, 11].

Finally, in Chapter 6 we study the slow flow of granular media. When
external stresses are imposed on a dense granular medium, it does not flow
uniformly as a normal fluid would do under the same conditions. Instead
narrow shear bands are formed where the material yields and flows, while
the rest of the material remains solid-like and barely deforms (see Figure
1.3). Typically these shear bands are 5-10 grain diameters wide, hindering
mixing, making grain flow hard to predict, and forming a major obstacle for
any continuum description. Here we study in detail the difference between
shear bands located in the bulk and near the wall, and in particular the
transition between these two regimes [12].
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Chapter 2

Cluster formation in
compartmentalized granular
gases §

Abstract

A brief overview is given of the recent studies into cluster formation in compart-
mentalized gases, focusing upon the so-called Maxwell Demon effect. A common
thread in these studies is that the clustering is related to the fact that the particle
flux from a compartment, or the granular pressure, is a non-monotonic function of
the number of particles in the compartment.

2.1 Introduction

One of the characteristic features of granular gases is their tendency to spon-
taneously separate in dense and dilute regions [1–3]. This property, which
makes them fundamentally different from any ordinary molecular gas, can
be traced back to the fact that the collisions between the granular parti-
cles are inelastic. Every time two particles collide, their relative velocity
is reduced proportional to the coefficient of normal restitution 0 ≤ e < 1.
The case e = 1 corresponds to a standard elastic gas in which no clustering
occurs.

§Adapted from: Ko van der Weele, René Mikkelsen, Devaraj van der Meer, and Detlef
Lohse, in The Physics of Granular Media, edited by H. Hinrichsen and D.E. Wolf (Wiley,
Weinheim, 2004) 117-139.
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8 Chapter 2. Cluster formation in granular gases

Figure 2.1: Cluster formation in a simulated system of 40,000 disks colliding
inelastically (with coefficient of restitution e = 0.6) on a frictionless floor, after a
time corresponding to 500 collisions per particle. The area fraction covered by the
disks is 0.05, and periodic boundary conditions are used in both directions (from
[5]).

The clustering effect was first demonstrated in numerical studies of rapid
granular shear flows [4], and freely cooling granular gases [5]. Figure 2.1,
from the seminal paper by Goldhirsch and Zanetti [5], shows cluster forma-
tion in a simulated two-dimensional system consisting of 40,000 disks, collid-
ing inelastically (like hockey pucks on a frictionless ice floor) with restitution
coefficient e = 0.6. The particles start out from a spatially homogeneous
state, with a Maxwellian velocity distribution, and are left to evolve without
further energy input, which means that the mean kinetic energy (or equiv-
alently, the granular temperature, as described in the Introduction) decays
with time due to the inelastic collisions.

The clustering process can be understood as follows [5]: In a region
where, due to some fluctuation, the density exceeds the average density of
the gas, the collision rate is higher and the granular temperature will there-
fore drop faster than in the neighboring, less dense regions. In hydrody-
namical terms this means that a pressure gradient is built up between high
and low temperature (and thus pressure) regions, resulting in a migration of
particles into denser regions from diluter ones. Hence the dense regions be-
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come denser, and the dilute regions diluter, and this self-enhancing process
spontaneously leads to the formation of clusters (consisting of many slow
particles) coexisting with almost empty regions (where the particles move
much faster).

The above clustering mechanism also holds for granular gases that are
kept at a constant granular temperature by an external energy input – typi-
cally by vertically vibrating the whole setup or its bottom [6, 7]. We choose
to focus our attention on the cluster formation of such forced gases in a
compartmentalized system. These are especially suited to get a clear-cut
view of the clustering effect; moreover, they can be directly related to com-
partmentalized systems like sorting machines and conveyor belts, for which
clustering is known to be a major source of problems [1, 8].

2.2 The vertically vibrated experiment

A striking illustration of the cluster formation in compartmentalized granu-
lar gases is provided by the experiment illustrated in Figure 2.2, which was
first described by Schlichting and Nordmeier [9]. The setup consists of a
box, mounted on a shaker, divided into two equally sized compartments by
a wall extending from the bottom to height h. A few hundred beads are
brought into a gaseous state by shaking the system vertically and are able
to jump from one compartment to the other.

If the shaking is vigorous enough, the inelasticity of the gas is over-
whelmed by the energy input into the system and the particles are dis-
tributed uniformly over the two compartments just as in any ordinary gas
(Figure 2.2a). However, when the shaking strength is reduced below a crit-
ical level, the particles are seen to cluster into one of the compartments
(Figure 2.2b-d). This goes on until a dynamical equilibrium is reached be-
tween the two compartments: the average outflow of rapid particles from
the nearly empty compartment is balanced by the outflow of slow particles
from the well-filled compartment. In terms of the granular temperature,
one ends up with a “cold” compartment containing a lot of relatively slow
particles, and a “hot” compartment containing only a few rapid particles.

This spontaneous separation in cold and hot regions is reminiscent of
Maxwell’s demon [10, 11], a thought experiment constructed by Maxwell in
1871. This demon was supposed to guard the door between two rooms filled
with a gas in thermodynamic equilibrium. Its task was to let slow molecules
pass in one direction and fast molecules in the other and thus create one
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(a) (b) (c) (d)

Figure 2.2: Snapshots from the so-called Maxwell demon experiment. At vigorous
shaking (a) the particles (glass beads with diameter 4 mm and restitution coefficient
e = 0.95) are distributed uniformly over the two compartments. Reducing the
shaking strength below a critical value results in the formation of a cluster in one
of the compartments (b)-(d). Note that the particles in the dilute compartment
jump higher than those in the dense compartment, i.e., the granular temperature
is higher in the dilute compartment. The height of the wall is 60 mm.

cold and one hot room. The initial random distribution of molecules with
various kinetic energies would then alter such that energy could be extracted
from the system. The work of the demon violates the second law of thermo-
dynamics, since it arranges the system into a more ordered state, thereby
decreasing the systems entropy. The reason why the demon does not work in
any ordinary gas is that in order to determine the energy of the molecules,
it would have to interact with them, either physically or by exchanging pho-
tons, such that the demon itself gains entropy from the gas. The entropy
of the whole system then increases, in agreement with the second law of
thermodynamics. However, a granular gas can behave as if Maxwell’s de-
mon is present, thanks to the non-elasticity of the collisions and the fact
that such a gas is intrinsically far from equilibrium. Entropy is transferred
to the grains’ microstructure by heating them up or by deforming them.
However, ordinary temperature does not play a role for the grains, allowing
the system to take on a more ordered state as far as macroscopical particle
properties are concerned.

The gas is not isolated from the rest of the world: it constantly gets
energy from outside, and via the inelastic collisions constantly transfers this
energy to the microscopic scales (thereby effectively losing it) in the form of
heat, sound, and deformation energy. The granular Maxwell Demon effect is
of course not violating any law of physics, but is instead a prime example of
pattern formation in a non-equilibrium system [12, 13], like e.g. Marangoni-
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Bénard cells in a pan of oil heated from below [14], or sand ripples on the
beach [15].

2.3 Eggers’ flux model

A theoretical model for the Maxwell Demon effect was proposed by Eg-
gers [10]. As a starting point, he took the condition for a dynamic equilib-
rium between the two compartments, namely that the flux of particles from
left to right must equal that from right to left:

Fl→r = Fr→l , (2.1)

noting that an asymmetric equilibrium can only be explained if the particle
flux from one compartment to the other is not a monotonously increasing
function of the number of particles (as it would be for elastically colliding
particles). Instead, it must show a maximum.

For simplicity, Eggers considered a 2-dimensional gas of colliding disks
with radius r, in a slightly different setup than the one in Figure 2.2: The
wall is taken to extend over the whole height of the system, with only a small
opening (of width S) positioned at height h above the bottom. The bottom
of the container is taken to move in a sawtooth manner, with amplitude
a and frequency f , such that a colliding particle always finds it to move
upward with the same velocity vb = af . Moreover, the amplitude a is very
small compared to the mean free path of the particles, so the bottom is
effectively stationary.

Assuming the gas inside each compartment to be in a steady state, Eg-
gers proceeds to derive an analytic expression for the particle outflow from
each compartment, based on three equations from the kinetic theory of di-
lute granular gases [16]: (1) the equation of state relating the pressure,
density, and temperature, (2) the force balance within the gas, which says
how fast the pressure decreases with the height z above the bottom, and
(3) the balance between the upward energy flux through the gas (fed by the
vibrating bottom) and the dissipation due to the inelastic particle collisions.
To minimize wall effects, which are not essential to the problem, all collisions
with the walls and bottom are taken to be elastic.

The temperature profile T (z) that is found on the basis of these equa-
tions, turns out to be close to constant, except for a narrow region of higher
temperature near the bottom; this is the region where the energy is in-
jected into the system and the particles have not yet had the opportunity
to redistribute their kinetic energy via collisions. Taking for simplicity a
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Figure 2.3: The Eggers flux function for the vertically vibrated system (equation
(2.3)) with A = 1 s−1 and B̃ = 2 (a), B̃ = 4 (b), and B̃ = 4.5 (c), with n
representing the particle fraction (in the compartment) relative to the total number
of particles in the system. The dashed line indicates that the flux from a relatively
empty compartment (left intersection point) can be equal to the flux from a well-
filled compartment (right intersection point), which is exactly the condition for a
clustered state; the associated fractions add up to 1. The symmetric state n = 0.5
(corresponding to a flux just to the right of the maximum of F (n)) is unstable at
this value of B̃.

constant temperature profile Tk(z) = Tk throughout the compartment, with
k = 1, 2 labelling the two compartments, one finds that the number den-
sity is exponentially decaying with z (as in the standard barometric height
distribution), in fair agreement with molecular dynamics simulations [10]:

nk(z) =
gN̄k

Tk
e−gz/Tk , with Tk =

(
af

2
√

πr(1 − e2)N̄k

)2

. (2.2)

Here N̄k denotes the number of particles divided by the width of the com-
partment (Nk/L), r is the radius of a particle, and the expression for Tk

(≡ 1
2〈v〉2k) is obtained by balancing the energy input and the energy dissi-

pated in collisions [10].
The particle flux from compartment k through the hole is then given by

nk(h)
√

Tk/2πS, i.e., the product of the number density at the height of the
hole, the velocity in the horizontal direction, and the extension of the hole
S. This can be worked out to yield

F (N̄k) = F0N̄k
2
e−bN̄k

2

, (2.3)

where F0 =
√

8π(Sgr/af)(1 − e2) and b = 4πghr2(1 − e2)2/(af)2.
In Figure 2.3 the above flux function is given in terms of nk (i.e., the

fraction of the total number of particles in compartment k) rather than N̄k.
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Since N̄k = Nk/L = nkNtot/L (with L the width of a compartment), the
flux function then takes the form

F (nk) = An2
ke

−B̃n2
k , (2.4)

with

A =
√

8π
SgrN2

tot

afL2
(1 − e2) , B̃ = 4π

gh

(af)2

(
rNtot

L

)2

(1 − e2)2 . (2.5)

This figure illustrates the Eggers theory, representing the particle flux F (nk)
from any of the two compartments (k = 1, 2) as a function of the fraction
of the total number of particles in that compartment,

∑
nk = 1. The

one-humped form of the function makes it possible to have equal fluxes (or
pressures) for the two compartments while the number of beads differ, which
is precisely the requirement for a clustered state.

The dimensionless number B̃ determines whether the system will end
up in the uniform or in the clustered state. For a given choice of granular
beads (r and e fixed), B̃ can be raised either by increasing the height of the
separating wall h or the total number of particles Ntot, or by decreasing the
driving velocity af .

In the limit B̃ → 0, the exponential term in equation (2.4) approaches
unity and F (nk) thus grows monotonically with nk (just as for an elastic gas
with e = 1). This makes a balance between a well-filled and a nearly empty
compartment impossible and the system settles into the homogeneous state.

As B̃ is raised, however, the exponential term comes into play. This is
depicted in Figure 2.3c for A = 1 s−1 and B̃ = 4.5. The function F (nk)
still starts out from zero at nk = 0 and initially increases with nk. However,
beyond nk = 1/

√
B̃ the function goes down again, as a result of the dis-

sipative effect of the increasingly frequent particle collisions. This enables
a flux balance (see Figure 2.3c) between a well-filled and a dilute compart-
ment, provided the maximum of F (nk) lies at a value nk < 1

2 (i.e., B̃ > 4).
Now the condition

∑
nk = 1 can be satisfied not only for an equal pair

n1 = n2 = 1
2 (corresponding to a flux just to the right of the maximum

in Figure 2.3c) but also for an unequal pair n1 �= n2 (corresponding to a
smaller flux, indicated by the horizontal dashed line).

The dynamics of the system is governed by the following balance equa-
tion,

dn1

dt
= −F (n1) + F (n2) + ξ1 = −F (n1) + F (1 − n1) + ξ1 , (2.6)
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Figure 2.4: The bifurcation of the time-averaged asymmetry parameter ε as func-
tion of h (the height of the hole above the bottom) in the Eggers model. The circles
represent numerical simulations with Ntot = 360 disks (radius 0.01 m, restitution
coefficient e = 0.95), compartment width L = 1.60 m, and velocity of the bottom
af = 0.149 m/s. The dotted line is the result of the flux model defined by equa-
tions (2.4)-(2.6), while the full line represents a more elaborate version of the model
without the simplifying assumption that Tk(z) is independent of z (from [10]).

(and analogously for dn2/dt) which simply states that the time rate of change
dnk/dt of the particle fraction in the kth compartment is equal to the inflow
from its neighbor minus the outflow from the compartment itself. The term
ξ1 models the noise which comes from statistical fluctuations in the particle
flux [10]; without it, the above balance equation is to be interpreted as a
mean field description.

In equilibrium, the two fluxes in equation (2.6) must cancel each other
(F (n1) = F (1 − n1)), see equation (2.1). For B̃ < 4 this yields one solution
n1 = 1

2 (the symmetric state). For B̃ ≥ 4 this solution becomes unstable,
but simultaneously two asymmetric stable solutions come into existence; one
representing a state with a cluster in the left compartment and the second
one its (equivalent) mirror image with a cluster in the right compartment.
The clustering transition is depicted in Figure 2.4, where the absolute value
of the (time-averaged) asymmetry parameter,

ε =
N̄k − 1

2N̄tot

N̄tot
= nk − 1

2
, (2.7)

is plotted as function of h (the height of the hole above the bottom). The
figure includes the results from molecular dynamics simulations of 360 in-
elastically colliding disks (open circles), the flux model defined by equations



2.4. Extension to more than 2 compartments 15

(2.4)-(2.6) (dotted line), and the numerical result of the Eggers model with-
out the simplifying assumption that T (z) is independent of z (solid line) [10].
Even though there is an offset between the constant-T theory (dashed line)
and the simulation, this theory using only one dimensionless parameter (B̃)
captures the form of the bifurcation fairly well. The transition to the clus-
tered state is seen to be similar to a second-order, continuous phase transi-
tion. Just above the critical point the asymmetric solutions according to the
dashed line are described by 〈ε〉 = ±[3(B̃ − 4)/16]β with a critical exponent
β = 1/2. This is the common (mean field) power-law behavior near a second
order phase transition [17].

In order to get an estimate for the amplitude of the fluctuations in the
system, one may assume that the particles pass through the hole uncorre-
lated (which is equivalent to saying that ξ1 in equation (2.6) is a Gaussian
white noise term, with zero mean and a δ correlation function). The result-
ing variance of the asymmetry parameter, 〈(ε − 〈ε〉)2〉 ∝ |Ntot(B̃ − 4)|−1/2,
tells us that the relative amplitude of the fluctuations decreases with grow-
ing particle number (as expected) and that the divergence near the critical
point B̃ = 4 goes with the exponent 1/2 typical of second order phase transi-
tions [17]. Eggers notes that this model prediction is in reasonable agreement
with numerical simulations [10]. This noise term will be discussed further
in Chapter 3.

2.4 Extension to more than 2 compartments §

The transition to the clustered state was measured experimentally by van der
Weele et al. [18], not only for the original system with two compartments but
also for three compartments, and in a subsequent paper this was extended
to an arbitrary number of K connected compartments [19]. The systems
considered were 3-dimensional, as in Figure 2.2. This has no consequences
for the general form of the flux function, which is still given by equation
(2.4), but the two factors A and B̃ now read (cf. equation (2.5)):

A =
√

8π
Sgr2N2

tot

afΩ2
(1− e2) , B̃ = 4π

gh

(af)2

(
r2Ntot

KΩ

)2

(1− e2)2 ≡ K2B .

(2.8)
The opening S between the compartments is now a 2D surface (instead of a
1D length), and the compartment width L has been replaced by the ground

§The rest of this Chapter is a review of recent work by various other authors on the
clustering phenomenon in compartmentalized systems. It appeared as a review paper (see
footnote on page 7) and is kept here for completion.
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area Ω.
For a system consisting of K compartments arranged cyclically, such

that the Kth and 1st compartments are neighbors, the balance equation
equation (2.6) takes the form (disregarding the noise term):

dnk

dt
= F (nk−1) − 2F (nk) + F (nk+1) , (2.9)

with k = 1, 2, ..., K. For a non-cyclic arrangement the equation for the end
compartments is modified, of course, but it turns out that this does not
qualitatively change the results [19].

For the two-compartment system (K = 2), the experimental data con-
firm the second-order transition predicted by the flux model. This can be
seen in Figure 2.5a, where the measured nk (for both compartments k = 1, 2)
are plotted as solid dots. In this figure, the factor B̃ has been rescaled to B,
so the critical value at which the transition takes place now lies at 1. The
experiments were performed by changing the driving frequency f , while all
the other quantities appearing in B were held fixed [18].

In contrast, for K = 3 compartments the clustering transition is found
to be abrupt and hysteretic, i.e., a first-order phase transition.∗ Figure 2.5b
shows the experimental results together with the flux model predictions
for a cyclic three-compartment system [18]. The dots represent measure-
ments from experiments that were started out from the uniform distribution
{1

3 , 1
3 , 1

3}, and the crosses for those that were started from a single peaked dis-
tribution: They clearly show that there is an interval of B-values for which
both the uniform and the clustered state are stable. The dashed curves for
B > 1 that run above and below the horizontal line of the uniform state are
associated with a transient state in which two of the compartments are com-
peting for dominance, while the third compartment is already much more
dilute. Staring out from the (unstable) uniform distribution, the system
generally first goes through this transient state before it settles in the clus-
tered equilibrium. No such transient states are encountered in the opposite
transition for B < 0.73.

The same qualitative behavior, with a first-order transition, is found for
all K ≥ 3 [19]. Quantitatively, the hysteretic behavior gets more pronounced
as the number of compartments is increased, and the transient states become
more numerous and also more important. Figure 2.6a illustrates this for the

∗There is a close analogy with the K-state Potts model here, i.e., an assembly
of Ntot connected spins with K possible orientations per spin. Also in the Potts
model one finds a phase transition of second order if K = 2 (the Ising case) and a
transition of first order if K ≥ 3 [20, 21].
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(a)

(b)

Figure 2.5: (a) Bifurcation diagram for the Maxwell demon experiment with K =
2 compartments (k = 1, 2). The dots are experimental data, and the lines are
the stable (solid) and unstable (dashed) equilibria according to the flux model of
Equations (2.4) and (2.8). The transition to the clustered state is a continuous
one, i.e., a second-order phase transition. (b) The same for the 3-compartment
experiment (k = 1, 2, 3). The dots and crosses are experimental data: dots for
measurements that were started out from the uniform distribution {1

3 , 1
3 , 1

3}, and
crosses for those that were started from a single peaked distribution. The transitions
to and from the clustered state are abrupt and hysteretic, typical of a first-order
phase transition (from [18]).
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Figure 2.6: (a) Bifurcation diagram for K = 5 compartments. The sketches on
the right depict typical configurations associated with the solid (stable) and dashed
(unstable) equilibria of the flux model. (b) Four stages in a clustering experiment
at B slightly above 1. The particles do not cluster directly into one compartment,
but first go through a transient 2-cluster state, which can be seen in the snapshots
at t = 10 s and t = 25 s. (c) Sudden collapse of a cluster at stronger shaking
(B = 0.33): The cluster is clearly present until t = 42 s, then suddenly collapses,
leaving no trace one second later (from [26]).
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case of K = 5 non-cyclic compartments. The region of hysteresis (where the
uniform and the clustered state are both stable) now extends from B = 0.34
to B = 1 and the dashed lines of the transient states form a whole web,
reaching even to the left of B = 1. They correspond to states with m = 2, 3, 4
clusters, respectively, of which one representative configuration is depicted.

In Figure 2.6b four stages in the clustering process are shown, for a B-
value slightly above 1, starting out from a nearly uniform distribution. A
2-cluster transient state is clearly visible at t = 10 s and t = 25 s, and it takes
about a minute before the single-cluster state is reached. For larger values of
K the experiment can easily get stuck in such a transient state (especially for
low driving frequencies, i.e., B � 1) and it may take a very long time before
the single-cluster state is reached, even though mathematically speaking
this is the only truly stable state [19, 22]. The clusters collapse one by one
in an exceptionally slow coarsening process: The characteristic size of the
surviving clusters is found to increase as [log(t)]1/2 only [23].

The opposite process of declustering, depicted in Figure 2.6c, is also of
interest. This is not only because declustering is more desirable in practical
applications (e.g. in sorting machines, where clustering is an unwanted and
often costly effect) but also because the breakdown of a cluster turns out to
be by no means the same as clustering in reverse time order. Van der Meer
et al. [24] found a surprising phenomenon called “sudden collapse”: Start-
ing out with all particles in one compartment, the cluster seems stable for a
considerable time, spilling only a small number of particles to its neighbors.
However, at a certain moment (between t = 42 s and 43 s in the experiment
of Figure 2.6c) the cluster suddenly collapses and the particles spread out
evenly over all compartments. The collapse, which can be delayed for ex-
tremely long times if B approaches the critical value where the single-cluster
state becomes stable (with the cluster lifetime diverging as (Bcrit−B)−1/2),
has been studied in detail in references [24] and [25].

2.5 Urn model

A different analysis of the Maxwell Demon experiment was given by Lipowski
and Droz [28], who pictured it as a modified version of the Ehrenfest urn
model [29]. The particles are initially distributed over two urns, and can
change urn according to a probabilistic rule that mimics the behavior of
granular matter. This approach was introduced to get a better insight into
the role played by the statistical fluctuations, which had not been covered
by the deterministic Eggers model (excluding the noise term in equation
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(2.6)).
In the model defined in [28], the particles in each urn are subject to

thermal fluctuations and the granular temperature T of an urn is taken to
depend on its particle content as follows:

T (nk) = T0 + (1 − nk)∆ , (2.10)

where nk = Nk/Ntot is the fraction of particles in the urn, and T0 and ∆ are
positive constants. So T (nk) decreases with nk, as it should for a granular
gas, yet the linear decay (from T (0) = T0 + ∆ to T (1) = T0) is markedly
different from the inverse square dependence derived by Eggers, cf. equation
(2.2).

The rule by which the particles change urn is defined as follows: (i)
One of the Ntot particles is selected randomly, and (ii) with probability
exp(−1/T (nk)) it changes urn. This yields the following expression for the
flux out of an urn:

F (nk) = nk e−1/T (nk) , (2.11)

which is a again one-humped function of the particle fraction nk. Note
that in the limit of infinite temperature (T0 = ∞ and ∆ ≥ 0 arbitrary)
the original Ehrenfest model is recovered, for which every selected particle
changes urn.†

Given the flux function, the dynamics of the system is governed by the
same balance equation as in the Eggers model (cf. equation (2.6)):

dn1

dt
= −F (n1) + F (1 − n1) . (2.12)

The zeros of this equation are the equilibrium states of the system, and their
stability can be found by plotting dn1/dt as function of n1 and examining
its slope. If dn1/dt goes through zero with a downward slope, the dynamics
is directed (locally) towards this zero and the corresponding equilibrium is
stable. Vice versa, an upward slope corresponds to an unstable equilibrium.

In this way, the phase diagram of Figure 2.7a can be constructed. The
uniform equilibrium n1 = 1/2 exists for all values of T0 and ∆, and it is
stable everywhere except in region II.

If one follows a path through this phase diagram (by changing the values
of T0 and ∆ in very small steps, and very slowly, such that every time the

†Bena et al. [30] study a closely related urn model with F (nk) = nkexp(−Ank).
They describe the second-order clustering transition (at A = 2) in terms of the
Yang-Lee theory of phase transitions.
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Figure 2.7: (a) Phase diagram of the urn model. The symmetric state (〈ε〉 = 0) is
stable in regions I, III, and IV , and unstable in region II. In regions II, III, and IV
a stable asymmetric state exists (|〈ε〉| �= 0). In regions III and IV one can therefore
end up in either the symmetric or the asymmetric state depending on the initial
condition; the dashed line separating region III from IV is described in the text.
(b) Bifurcation diagram of the asymmetry parameter |〈ε〉| as a function of T0, for
∆ = 0.5 fixed, showing the second-order phase transition between regions II and
I. The solid curve corresponds to the numerical solution of equation (2.12). The
symbols are the result of Monte Carlo simulations for Ntot=500 (+) and 5000 (∗),
respectively. (c) Hysteretic, first-order transition of |〈ε〉| as a function of ∆, for
T0 = 0.2 fixed, calculated from Monte Carlo simulations for Ntot = 2000. Symbols
(+) correspond to increasing ∆, and (�) to decreasing ∆ (from [28]).
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system can adjust itself to its new equilibrium) one finds, upon crossing the
line between regions I and II from the left, a second order-phase transition.
The uniform state n1 = 1/2 undergoes a pitchfork bifurcation, in which it
becomes unstable and simultaneously gives birth to two stable asymmetric
solutions (one corresponding to n1 > 1/2, and one to its mirror image with
n1 < 1/2). This is analogous to what is found in the two-compartment
Maxwell demon experiment.

However, if one follows the path further in the direction of region III,
additional bifurcations are encountered that are not found in the original
experiment. Upon entering region III, the symmetric state is re-stabilized
via a second pitchfork bifurcation, simultaneously giving birth to two new,
unstable asymmetric states. The already existing stable asymmetric states
are not affected by this bifurcation.

Through regions III and IV, the two unstable asymmetric states grow
towards their stable counterparts and eventually, upon crossing the line be-
tween IV and I they coalesce and annihilate each other in a reverse saddle-
node bifurcation. We then enter region I again, where only the stable sym-
metric state remains.

The above three bifurcations can all be seen in Figure 2.7b-c, where
the absolute value of the time-averaged asymmetry parameter ε = (N1 −
N2)/2Ntot is plotted as a function of the control parameter; this is T0 in the
first plot, and ∆ in the second. First, in Figure 2.7b we follow a vertical
path through the phase diagram at a constant value of ∆ = 0.5, with a clear
second-order phase transition at T0 = 0.25. The critical point corresponds
precisely with the top of the boundary curve between regions I and II T0 =√

∆/2−∆/2. Lipowski and Droz checked that in the vicinity of the critical
point the asymmetry parameter |〈ε〉| ∝ |T0 − 0.25|β, with the usual critical
exponent β = 1/2, just as in the Eggers model.

Second, in Figure 2.7c we follow a horizontal path through the phase
diagram at a constant value of T0 = 0.2. If the horizontal axis would have
started at ∆ = 0, one would also have seen the second-order phase transition
at ∆ = 1

2(1 − √
1 − 4T0)2 = 0.153, associated with the border between

regions I and II. As it is, we see the bifurcations at the lines between regions
II and III (at ∆ ≈ 1.1) and IV and I (at ∆ ≈ 1.7). Together they form a
hysteretic, first-order transition between the stable clustered state and the
uniform distribution.

There is no bifurcation between III and IV. Nevertheless, in the phase
diagram of Figure 2.7a there is a dashed line between III and IV emanating
from the tricritical point at ∆ = 2

3 , T0 = (
√

3 − 1)/3 = 0.244. This line
has been determined by considering the probability distribution p(M, t), i.e,
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Figure 2.8: Probability distributions P (ε) for the urn model in region I (left),
region II (center), and region III (right) in the long-time limit for Ntot = 200
particles (from [28]).

the probability that a given urn (say 1) contains M particles at time t, as
outlined below.

The evolution equations for p(M, t) follow directly from the dynami-
cal rules of the urn model and can be solved numerically, starting from
arbitrary initial conditions [28]. Figure 2.8 shows three typical probabil-
ity distributions, expressed in terms of the asymmetry parameter ε, in the
long-time limit t → ∞. The left plot, characteristic for region I, shows the
single-peak distribution around ε = 0 corresponding to the symmetric state:
p(ε) ∝ exp(−ε2), see also [31, 32]. The middle plot, representing region
II, shows two peaks away from the center, corresponding to the clustered
states. These plots are for Ntot = 200 particles; the width of the peaks
decreases with growing Ntot. The critical probability distribution on the
border line between regions I and II (for ∆ < 1/3) has been determined
in references [31, 32] to have the form p(ε) ∝ exp(−ε4), i.e., a peak with a
flattened top. At the tricritical point (for ∆ = 1/3) the top flattens even
further to p(ε) ∝ exp(−ε6).

Going into regions III and IV, the probability distribution becomes more
complicated and consists of three peaks, since both the symmetric and the
asymmetric state are stable here. For comparatively small Ntot, as in the
right plot of Figure 2.8, all three peaks are clearly visible, but in the thermo-
dynamic limit Ntot → ∞ either the central peak vanishes (in region III) or
the two outer peaks (in region IV) [28, 32]. This reflects the relative prob-
ability to end up in either the symmetric or the asymmetric state, starting
from random initial conditions. On the line that separates regions III and IV
the three peaks are equally strong; this is interpreted by Lipowski and Droz
as a line of discontinuous transitions, based on a phenomenological analogy
with the same kind of phase transition in equilibrium statistical mechanics.

One of the main goals of the urn model was to study the fluctuations
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of the symmetry parameter close to the critical point. Making use of the
variance of ε, and the calculated probability distribution in the long-time
limit p(i,∞), the susceptibility κ is defined as [28]:

κ = Ntot〈(ε − 〈ε〉)2〉 =
1

Ntot

⎛⎝Ntot∑
i=0

i2p(i,∞) −
[

Ntot∑
i=0

i p(i,∞)

]2
⎞⎠ . (2.13)

At a continuous phase transition the susceptibility is known to diverge, and
indeed, that is exactly what is found at the transition between regions I and
II. The measured data close to the critical point in Figure 2.7b indicate that
κ ∝ |T0 − 0.25|−γ , both in the symmetric and (albeit less clearly) in the
asymmetric state, with the mean field exponent γ = 1 [17, 28].

Finally, the urn model has been extended to more than two urns by
Coppex, Droz and Lipowski [20]. The K urns are arranged cyclically, and
one allows only nearest neighbor interactions, according to the same selection
rule as before. The resulting model is analogous to the K-compartment
model described in Section 2.4, and despite the rather peculiar temperature
convention (which was at the root of the unprecedented first-order transition
in the case of two urns) the results are very similar.

In particular, for K = 3 it is found that the transition between the
uniform and the clustered state is always of first order and accompanied by
hysteresis. Also the unstable transient state (with two well-filled urns while
the third one is nearly empty, n1 = n2 > n3) is recovered, and even the
sudden collapse phenomenon has been re-examined in the context of this
model.

All particles are initially put in one urn, and the two parameters T0 and
∆ are chosen such that the system lies just outside the region of stability of
the cluster. In Figure 2.9a the time evolution of the cluster fraction (ncl(t))
is shown for different values of T0 close to the critical value of T0,c = 0.1698,
at a fixed value of ∆ = 0.3. The behavior is markedly similar to that of a
real granular cluster, and for comparison we have included in Figure 2.9b an
analogous plot for the five fractions in our 5-compartment system of Figure
2.6c and reference [24]. After some initial spilling, in both cases a situation is
reached where the cluster fraction decreases only slightly. At a certain point,
however, it suddenly collapses and the particles are spread out uniformly
over the K compartments. The first three curves in Figure 2.9a (for T0 =
0.1710, 0.1705 and 0.1703, respectively) show that the lifetime of the cluster
grows strongly as T0 approaches the critical value, in agreement with the
divergence found in [24, 25]; and beyond this point the lifetime becomes
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infinitely long, since the clustered state is stable there, as is indicated by the
fourth curve (for T0 = 0.1690).

There is only one dissimilarity between the urn model and the Eggers
flux model for K compartments, and this concerns the diffusion towards
the uniform state after the sudden collapse. In the urn model, the width of
the density profile over the urns grows as t1/2, with the standard exponent
1/2 known from random-walker diffusion, whereas the Eggers model yields
an anomalous diffusion exponent 1/3 [24]. These different exponents are
related to the small-density behavior of the flux functions, which goes as
F (nk) ∝ nk in the urn model and as F (nk) ∝ n2

k in the Eggers model.
Indeed, it can be shown that for the general case F (nk) ∝ nα

k the diffusion
exponent is given by 1/(1 + α) [27].

2.6 Horizontally vibrated system

An elegant variation on the Maxwell Demon experiment was introduced by
Brey et al. [33], who considered the horizontally vibrated system depicted in
Figure 2.10 (left). It consists of a box, here seen in top view, divided in two
equal compartments containing a number of inelastically colliding particles.
Energy is injected into the system via the vibrating bottom wall. Just as in
the Eggers model, the wall is taken to vibrate in a sawtooth manner (with
an amplitude that is much smaller than the mean free path of the particles)
and collisions with the walls are taken to be elastic.

The bifurcation diagram for this system is shown in Figure 2.10 (right).
Here the absolute value of the time-averaged asymmetry parameter ε is
plotted as a function of a dimensionless parameter ξm, which is proportional
to Ntot [33]). So the total number of particles is the control parameter here,
while all other parameters are kept fixed.‡ For a sufficiently small number
of particles, a steady state is reached with all particles distributed equally
over the two compartments. But if Ntot is increased beyond a critical value,
the symmetry is spontaneously broken and the vast majority of the particles
clusters together in one compartment.

To explain these observations, Brey et al. use a model based on a hy-

‡This choice of control parameter could have been made in the original Maxwell
Demon experiment as well (cf. the dimensionless number B̃ in equation (2.8)).
Conversely, the control parameter used in that experiment (the velocity af of the
vibrating wall) is not a valid control parameter here; Brey et al. find that the
bifurcation diagram is not altered by modifying the velocity of the bottom, as long
as it is large enough to keep the system fluidized [33].
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Figure 2.9: (a) Sudden collapse of a cluster in the three urn system. Shown is
the time evolution of the cluster fraction ncl(t) (corresponding to the urn initially
containing all of the 50,000 particles) for various values of T0 close to the critical
point at T0,c = 0.169829772, while ∆ = 0.3 is held fixed. The cluster lifetime τ
grows as the critical point is approached; beyond this point τ becomes infinite as
exemplified by the curve for T0 = 0.169 (i.e, the cluster is stable there). From [20].
(b) The fractions nk(t), k = 1, .., 5 for a five-compartment system at B = 0.33,
starting out with all the particles in compartment 3. The solid line is calculated
from the flux model of equations (2.4),(2.8)-(3.1), and the fluctuating lines are
results from molecular dynamics simulations with input parameters corresponding
to the actual experiment in Figure 2.6. The cluster collapse occurs at τ = 42 s
(from [25]).
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Figure 2.10: (Left) Top view of the horizontally vibrated system. The bottom
wall is vibrating in a sawtooth manner with very small amplitude. The two com-
partments are connected by a gap of height h, which is chosen to be considerably
larger than the typical mean free path of the particles. (Right) Bifurcation diagram
showing the asymmetry parameter ε as function of the dimensionless parameter
ξm, which is proportional to the total number of particles Ntot. The open symbols
are data from molecular dynamics simulations (for a box of dimensions L = 140d,
S = 50d and h = 50d, with d the diameter of the particles), for various values of
the restitution coefficient (here denoted by α); the filled symbols are obtained by
a direct simulation Monte Carlo method [35]; and the full line is the theoretical
prediction from the hydrodynamic model by Brey et al. discussed in the text (from
[33]).

drodynamic description of a vibrated granular gas [33, 34]. They consider a
dilute granular gas confined between a vibrating wall at x = 0 and a station-
ary one at x = L, and assume (for each compartment) that there are density
gradients only in the x direction. Within this model, the temperature T (x)
is a monotonously decreasing function of x, while the pressure p(x) = p is
uniform throughout the whole compartment.§ Its value is found to depend
non-monotonically on the number of particles in the compartment (i.e., on

§There is an interesting difference with the system described by Eggers at this
point. The model of Brey et al. has a constant pressure p, and a temperature T
that decreases with the distance from the vibrating wall. By contrast, in Eggers’
model p decreases with the height above the vibrating bottom, while T is constant.
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ξm,k):

p ∝ 2ξm,k + sinh(2ξm,k)
cosh2ξm,k

≡ f(ξm,k) , k = 1, 2 . (2.14)

The function f(ξ) (i.e, the number-dependent part of the pressure) is a non-
monotonous function just like the flux functions of Eggers, and Lipowski
and Droz, with a maximum at ξm,k = ξ0 ≈ 1.20 (the root of ξ0tanhξ0 = 1).
Again, the non-monotonic form is essential for the clustering phenomenon.

For a steady state, the pressures in the two compartments are required
to be equal:

f(ξm,1) = f(ξm,2) , (2.15)

which may be compared with the analogous condition for the particle fluxes
in equation (2.1). For a total particle number such that ξm,1 + ξm,2 <
2ξ0, there is only one solution to the balance equation (2.15), namely the
symmetric state ξm,1 = ξm,2 < ξ0, corresponding to a point on the left flank
of the function f(ξ).

However, when ξm,1 +ξm,2 > 2ξ0, apart from the symmetric state (which
now corresponds to a point on the right-hand flank of f(ξ)), also an asym-
metric solution ξm,1 �= ξm,2 comes into existence, with one point lying to the
left of ξ0 and the other one to the right. This yields the theoretical curve in
the bifurcation diagram of Figure 2.10 (right). The asymmetry of the two
populations, as measured by ε, is seen to grow very fast indeed as the total
number of particles is increased beyond the critical value.

Just above the critical point, Brey et al. checked that the asymmetric
solutions are described by ε = ±0.31(ξm − ξ0)1/2, indicating again (just as
in the models of the previous sections) a critical behavior with the standard
exponent β = 1/2 for second order phase transitions.

As a final observation, in the limit for large particle numbers (ξ → ∞)
the function f(ξ) takes on the value 2, and the equal-pressure point on the
left flank of the function lies at ξ = 0.63923, corresponding to a certain
small number of particles. Any further increase of Ntot is then absorbed by
the dense compartment, while the particle number in the dilute compart-
ment remains constant at its fixed value. Naturally, this picture ultimately
breaks down when the particle number becomes so large that the dilute-gas
approximation is no longer valid and excluded volume effects start to play
an important role.
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2.7 Double well model

In this section we briefly touch upon an interesting idea put forward by
Cecconi et al. [36], who portray the Maxwell Demon experiment as an es-
cape problem, in the spirit of the Kramers model for reactions occurring
via thermally activated barrier crossing [37, 38]. The two compartments
are modelled as a double-well potential U(x) = −ax2 + bx4/4, in which
two particles are moving, driven by a stochastic heat bath and colliding
inelastically.

In the noninteracting case, without collisions, a particle is known to
spend an average time τ ∝ exp(∆U/kBTb) in a well before it escapes to the
other one, where ∆U is the height of the potential barrier it has to overcome,
and Tb the temperature of the heat bath. The Boltzmann constant kB is in
the present context set equal to unity.

A similar expression for the escape time can be derived for the interact-
ing case, with both ∆U and the granular temperature modified to take into
account the particle interaction. Two different situations have to be distin-
guished: (1) the uniform state with one particle in each well, with escape
time τ1, and (2) the clustered state with both particles occupying the same
well, with escape time τ2. The two escape times can be written as [36]:

τn ≈ exp
(

Wn

Tn

)
, n = 1, 2 . (2.16)

The barrier height for single occupation of a well is unaltered, W1 = ∆U ,
but in the case of double occupation it is reduced to W2 = ∆U − δU < ∆U
due to the excluded volume effect of the two particles. This acts effectively
as a repulsive force.

Similarly, the effective temperature T1 for a singly occupied well is still
nearly equal to Tb, but the temperature T2 for double occupation is consider-
ably smaller, due to the cooling effect of the inelastic particle collisions [36].
The reduction factor depends on the value of the restitution coefficient, and
for a typical value e = 0.90 the ratio T2/Tb is already found to be as low as
0.73. The inelastic collisions effectively act as an attractive force between
the particles.

Thus, the excluded volume effect and the inelasticity are two competing
effects, the competition of which can be tuned by varying either the heat
bath temperature Tb or the restitution coefficient e.

If one increases Tb, keeping all other parameters fixed, both escape times
τ1 and τ2 naturally decrease (following a linear behavior in an Arrhenius plot
of logτn vs. 1/Tb [36]) but they do so at different rates. For high values of
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Tb (corresponding to vigorous shaking in the Maxwell Demon experiment)
it is found that τ1 > τ2, meaning that the system spends most of the time in
the uniform state 1. However, when Tb is decreased below a certain critical
value, the situation is reversed and τ2 becomes larger than τ1. This heralds
the transition to the clustered regime, since now the particles spend most
of the time in the clustered state 2.

Also here the clustering can be related to a non-monotonicity in the
behavior of the flux F (n) from a well, with n = 1, 2 the number of particles
in the well. Recognizing that F (n) ∝ τ−1

n , the flux for high Tb (when no
clustering occurs) is an increasing function of n, whereas for low Tb (in the
clustered regime) it decreases with n. A further bridge between the flux
model and the stochastic heat bath description is given in reference [39].

The double well system exhibits, apart from the clustering effect, also
another intriguing phenomenon that we want to mention: At low temper-
ature Tb and strong inelasticity, the two particles tend to synchronize their
jumps from one well to the other. That is, the relative motion of the two
particles becomes frozen out due to the repeated collisions, and together
they behave as a two-particle “molecule” [36].

2.8 Further directions

There are many interesting generalizations and applications of the Maxwell
demon experiment. For example, with an eye to practical applications,
where granular materials are rarely mono-disperse, one may replace the
identical particles of the original experiment by a mixtures of different par-
ticles. In a two-compartment system filled with a bidisperse granular gas
consisting of large and small particles of the same material, we find the clus-
tering to be competitive: Depending on the shaking strength, the clustering
can be directed either towards the compartment initially containing the ma-
jority of the large particles, or to the one containing mainly small particles.
The experimental observations are quantitatively explained by a bidisperse
extension of the Eggers flux model. This behavior is described in Chapter
4.

In the same context, Barrat and Trizac [40] describe molecular dynamics
simulations on a bidisperse extension of the horizontally vibrated system
discussed in section 2.6. The granular mixture in this case consists of heavy
and light particles (of equal size but different mass density), with an equal
number of each species. As in the monodisperse system of Brey et al. [33],
the clustering transition is triggered by increasing the total particle number.
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It is found that the clustering of the heavier particles is considerably more
complete than that of the lighter ones, since the latter are more mobile.

The clustering effect can also be employed to generate spontaneous di-
rected transport, as was recently shown by van der Meer et al. in two different
compartmentalized systems [41]. The first system is the so-called “granular
fountain”, which is created via a simple modification to the original Maxwell
Demon setup depicted in Figure 2.2: A small hole is drilled, close to the bot-
tom, in the wall between the compartments. As a result, in the clustered
situation a net flow of particles goes through this hole back into the dilute
compartment; and each particle that enters the dilute compartment soon
picks up sufficient kinetic energy to jump over the wall again. This leads
to a stable convection roll, with an upward particle flow in the dilute (hot)
compartment and a downward flow in the dense (cold) one. In [41] this
system is studied experimentally, numerically, and theoretically, and all ob-
served phenomena are well reproduced by an adapted version of Eggers’ flux
model.

The second, related system is the “granular ratchet”. This is a cyclic
array of K compartments connected alternatingly by walls of a certain height
h (over which the particles can jump) and very high walls, extending to the
top lid of the setup, with a small hole near the bottom. The transport in
this system takes the form of a net particle current, in either the clockwise or
counterclockwise direction, arising spontaneously as a result of the granular
clustering effect [41].

Finally, we want to mention the close analogy between granular cluster-
ing and the traffic jam problem [42–44]. If one divides the highway in cells of
say 500 m (which in large parts of the Dutch highway network has actually
been realized via induction loops in the asphalt, which permanently moni-
tor the traffic) and considers the density ρk of cars in these cells, the traffic
flow from one cell to the next can be described by a flux function F (ρk).
This function is in fact one of the basic notions in traffic analysis, known
as the “fundamental diagram”, and has been measured innumerable times
in real life [45, 46]: Just as the flux functions in Figure 2.3, F (ρk) shows
a non-monotonic dependence on ρk. At low densities the cars flow freely
from cell to cell and F (ρk) increases with ρk, whereas at densities above 30
vehicles/km/lane the cars start to interact (braking, passing, and other ma-
noeuvres all reduce the forward velocity) and F (ρk) decreases. Even though
the precise behavior of F (ρk) in the congested regime needs further clarifica-
tion, since the traffic data here do not follow a one-dimensional curve but in-
stead are scattered over a two-dimensional region in the (F, ρ)-plane [47, 48],
the fundamental diagram approach with a one-humped function has already
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proven to be able to give an adequate description of traffic jam formation
on the highway. Recent reviews on this highly relevant application of the
Maxwell Demon effect can be found in references [45, 46].
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Chapter 3

Small-number statistics near
the clustering transition in a
compartmentalized granular
gas §

Abstract

Statistical fluctuations are observed to profoundly influence the clustering behavior
of granular material in a vibrated system consisting of two connected compart-
ments. When the number of particles N is sufficiently large (N ≈ 300 is sufficient),
the clustering follows the lines of a standard second-order phase transition and a
mean-field description works. For smaller N , however, the enhanced influence of
statistical fluctuations breaks the mean-field behavior. We quantitatively describe
the competition between fluctuations and mean-field behavior (as function of N)
using a dynamical flux model and Molecular Dynamics simulations.

3.1 Introduction

As discussed in the previous chapter, clustering is one of the most character-
istic features of granular gases. For systems divided into two equally sized
compartments separated by a wall of finite height [1–5], a quantitative model

§Adapted from: René Mikkelsen, Ko van der Weele, Devaraj van der Meer, Martin
van Hecke, and Detlef Lohse, Small-Number Statistics near the Clustering Transition in a
Compartmentalized Granular Gas, submitted to Phys. Rev. E (2004).

37
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for the clustering was derived by Eggers [2], based on a statistical description
of the energy budget within the gas. Central in this model is a flux function,
which represents the flow of particles between the compartments: The flux
out of compartment i (i = 1, 2), containing a fraction ni of the total number
of particles in the system, is given by the function F (ni). The dynamics of
the model is then governed by the following balance equation [2, 3]:

dn1

dt
= −F (n1) + F (n2) + ξ1 , (3.1)

i.e., the change in the particle fraction in compartment 1 is equal to the
mean flux it receives from compartment 2 (F (n2)), minus the mean flux
leaving compartment 1 (F (n1)). The last term ξ1 is the noise term, which
is generally assumed to be Gaussian and white [2, 6, 7].

Due to particle conservation (n1 + n2 = 1) the dynamics given by equa-
tion (3.1) can be rewritten as

dn1

dt
= G(n1) + ξ1 , (3.2)

where G(n1) = −F (n1) + F (1 − n1) is the net mean flux out of compart-
ment 1. So far the focus has been on systems containing a large number of
particles, for which the statistical noise constitutes only a relatively small
perturbation to the mean-field behavior governed by G(n1). For such sys-
tems, the Eggers flux model has proven to describe the clustering transition
very well, not only for a two compartment system, but also for the general-
ized case of k > 2 connected compartments [3–5]. In this chapter, however,
we will reduce the particle number to such an extent that the influence of the
noise term becomes comparable to (or even stronger than) the mean-field
behavior. Thus we witness how the mean-field phase transition gives way to
its noise-dominated counterpart. At sufficiently high noise rates (i.e., small
particle number N) the transition is completely wiped out and no clustering
occurs anymore.

The compartmentalized gas at hand (like many other granular systems)
is inherently noisy, owing to the fact that it contains much less particles
than the typical 1023 from textbook statistical physics. This makes it a
very natural and suitable system to study the influence of statistical fluctu-
ations [8–10].

We will study the granular gas by means of molecular dynamics (MD)
simulations. To connect the MD data to the dynamical model, we introduce
a discrete time version of equation (3.2), with dt being taken equal to the
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period T of the shaking, which is also defined as the unit of time (dt = T =
1):

ni(t + 1) = ni(t) + [M(ni(t)) + ξ(ni(t))] . (3.3)

The notation M(ni(t)), instead of G(ni(t)), is adopted to stress the fact that
we are now dealing with a discrete time mapping. To obtain M and ξ from
the MD simulations, one simply counts the number of particles that changes
compartment during one complete shaking cycle: the average corresponds
to M (which may be directly compared with the net flux F (ni) according to
Eggers’ theory), and the fluctuations define ξ. We will in particular study
the case of small total particle number N , down to N=50. The dynamics
given by equation (3.3) has the advantage over equation (3.2) that it is easier
to implement the constraint on ni to take on only positive integer values,
and it more naturally captures the small-number noise.

Moreover, since in the present context the number of particles is a crucial
parameter, we will work mostly with the actual particle numbers Ni (with
N1 + N2 = N) instead of the particle fractions ni, which conceal the actual
numbers. Of course, the two notations can be translated into one another
via ni = Ni/N .

This chapter is constructed as follows: Section 3.2 gives the MD results
for the different (uniform and clustered) shaking regimes and describes how
the nature of the clustering transition changes for decreasing particle number
N . In Section 3.3 the mapping equation (3.3) is reconstructed from the MD
data, i.e., both the mean-field term M and the fluctuation term ξ. In Section
3.4 we introduce a potential related to M , which enables a direct comparison
between the strengths of M and ξ. In Section 3.5 we then describe the time
correlations in the signal ni(t), one of the key indicators of a critical point in
the theory of phase transitions, and used here to illustrate the breakdown of
the mean-field behavior for small N . Finally, Section 3.6 contains concluding
remarks.

3.2 MD simulations

3.2.1 Numerical scheme

The molecular dynamics (MD) simulations are based on a code that updates
the particle and bottom positions every 10−5 seconds. Between collisions,
the particles move freely, describing parabolic paths under the influence of
gravity. Whenever a particle-particle or particle-wall collision takes place,
signalled by a spatial overlap, the velocity vector of the involved particles
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after collision is computed from the vector before collision according to New-
ton’s laws.

The simulated system consists of two connected rectangular compart-
ments of size 2.45 cm × 4.90 cm, separated from each other along their
longest side by a 3 cm high wall. A total number of N particles is dis-
tributed over the two compartments and given a random initial velocity
following a normal distribution. The particles are chosen to be smooth (no
friction) and hard (no deformation) with radius r=1.25 mm and are taken
to be made of steel, having mass m = 0.0625 g and coefficient of restitution
eparticles = 0.85. The particle positions are sampled every 0.01 seconds. The
code gives information not only on the change in the particle distribution,
but also on how many particles have changed compartment from 1 → 2 and
2 → 1. As a result, not only the net particle flux (G(N1)), but also the
individual fluxes from compartment 1 (F (N1)) and 2 (F (N2)) are obtained.

The side walls enclosing the setup are taken to be infinitely high, so the
system has no upper boundary. All walls, including the bottom, are assigned
a coefficient of normal restitution equal to that of glass, ewall = 0.95.

Energy is injected into the system by means of a sinusoidally vibrat-
ing bottom with adjustable frequency and amplitude. For simplicity, the
amplitude is fixed at a=1 mm in all simulations presented in this chapter,
such that the frequency is the only control parameter by which we tune the
shaking strength.

3.2.2 Time evolution and Probability Distribution Functions

The MD results give a very clear picture of the main phenomenology around
the clustering transition. In Figure 3.1 (left column) we see how the number
of particles evolves in the left compartment as a function of time, for three
different frequencies around the critical one. These simulations were done
for N = 300 particles, starting out from the symmetric distribution with
(N1(0) = N2(0) = 150). The particle distribution was sampled at 100 Hz,
and each picture depicts 105 samples (103 seconds) in the steady state.

These and similar time series yield the probability distribution function
(PDF) shown in the right column of Figure 3.1, representing the probability
of finding a given number of particles within a compartment. In creating
the PDFs the particle numbers for both compartments are used, therefore
these are always symmetric around N/2 due to particle conservation. The
maximum value of the PDF gives the most probable particle distribution
and the width of the peaks around the maximum value is a measure of the
magnitude of the fluctuations. The first 104 samples (102 s) are omitted, in
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Figure 3.1: Molecular dynamics simulations for N = 300 particles. Left column:
Time evolution of the number of particles in the left compartment [N1(t)] starting
from the symmetric distribution N1(0) = N2(0) = N/2 = 150. Right column:
Probability distribution function (PDF) showing the statistical distribution of the
particles over the two compartments. Three different regimes are distinguished,
depending on the shaking strength: (I) At mild shaking (top row, f=50Hz), the
particles cluster in one of the two compartments. (II) At intermediate shaking
strength (middle row, f=55Hz), they still tend to cluster, but the system is inter-
mittently driven out of this state by the statistical fluctuations. (III) For strong
shaking (bottom row, f=70Hz), the system is fluctuating around the symmetric
distribution.
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order to avoid initial transients, using the next 106 samples (104 s) for the
determination of the PDFs.

Let us first consider the shaking frequency f = 50 Hz (Figure 3.1,
top). The initial symmetric distribution is highly unstable and the par-
ticles rapidly cluster into one of the two compartments. The clustered state
at N1 ≈ 270 is stable and the particle distribution will fluctuate around this
value as the shaking is continued. This behavior is reflected in the PDF
which has two separate peaks corresponding to the two clustered states,
with N1 > N2 (cluster in left compartment, depicted in the time series plot)
and N1 < N2 (cluster in right compartment) respectively. The maximum
and mean value of the peaks are not located at precisely the same position,
as the peaks are skewed slightly towards the center N/2.

Increasing the shaking strength to f = 55 Hz shows a change in the
behavior of the particle distribution (Figure 3.1, middle). The unclustered
state still is unstable and the particles rapidly begin to cluster into one of
the compartments. However, due to the increased shaking strength (and
the fact that the clustered state lies closer to the symmetric state than
before) the fluctuations are strong enough to take the system out of this
situation and towards the unclustered state again. Since this is unstable,
the system quickly evolves back into either one of the two clustered states,
giving rise to the intermittent behavior seen in the time series. Looking at
the corresponding PDF, two distinct peaks are still present, but they are
now connected, in agreement with the observation that the system spends
some considerable time in the neighborhood of the unclustered state. The
fact that the two peaks have moved closer together illustrates the decreased
asymmetry of the clustered state, and their broadening reflects the stronger
fluctuations.

For strong shaking, f = 70 Hz, the only stable configuration is the un-
clustered state (Figure 3.1, bottom). Here the energy input into the system
(via the vibrating bottom) overpowers the energy dissipation (via the inelas-
tic collisions) and no clustering occurs. Hence the particle distribution is
seen to fluctuate around the unclustered state. The PDF reduces to a single
peak, taking the shape of a Gaussian distribution around the unclustered
state. Note that the peak is narrower than those for f = 55 Hz (middle
plot): the influence of the fluctuations has decreased again.
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Figure 3.2: The clustering transition for three different particle numbers: N=300
(top left), N=100 (top right), and N=50 particles (bottom left [starting with both
compartments equally filled] and right [starting from a clustered state]). The con-
tours give the probability. These diagrams are constructed from the PDFs (cf.
Figure 3.1) for a range of shaking frequencies f around the critical value fc; the
PDFs of Figure 3.1 are vertical cuts through this figure. The circles represent the
maximum of the PDF at each measured frequency. For N=300 the diagram has all
the characteristics of a standard second-order phase transition: a pitchfork bifur-
cation with its branches opening as (fc −f)β , with the mean-field critical exponent
β = 1

2 . For N=100 the branches do not follow this power-law anymore due to
the increased influence of statistical fluctuations, and for N=50 even the branches
themselves have deteriorated.
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3.2.3 The clustering transition for varying total particle num-
ber N

The PDFs obtained for a range of frequencies around the critical value
fc can be used to construct the bifurcation diagrams of Figure 3.2. Here
we see how the PDF evolves as function of f for three different particle
numbers: N=300 (top left), N=100 (top right), and N=50 (bottom left
and right). The magnitude of the PDF is indicated by the gray-scale, with
black corresponding to a low probability (0.1 < p/pmax ≤ 0.15) and white
to the highest (0.95 < p/pmax ≤ 1). The gray backbone curve locates the
maximum of the PDF (pmax(f)), and the width of the gray-scale area around
this curve is directly related to the amplitude of the fluctuations.

For N=300 particles the transition between the unclustered and clus-
tered states resembles that of second-order phase transitions known from
equilibrium statistical physics, with a characteristic pitchfork bifurcation,
branching off as (fc − f)β , where β = 1

2 is the standard mean-field critical
exponent [11]. When the critical frequency (f = fc ≈ 56.7 Hz) is approached
from above, the fluctuations around the (stable) symmetric state grow. Be-
low the critical point (f < fc) the symmetric state is unstable, and it has
given way to two asymmetric distributions, one with N1 > N2 (cluster in the
left compartment) and one with N1 < N2 (cluster in right compartment).
These distributions become more asymmetric as f is lowered further away
from the critical point fc, while the fluctuations around the equilibrium de-
crease. All in all, in this case with relatively many particles the clustering
transition is very similar to that predicted by the Eggers model with zero
noise [2]. Together with experimental results [3], these MD simulations fur-
ther validate the Eggers model and its ability to capture the many-particle
(mean-field) transition.

Reducing the number of particles in the system causes a change in the
transition, since the fluctuations become so strong that they destroy the
mean-field characteristics. For N=100 particles (Figure 3.2, top right) the
bifurcation branches are already no longer following the standard square
root behavior. Just below fc ≈ 32 Hz they stay somewhat closer to the
symmetric state, owing to the fact that the fluctuations cause the system
to switch intermittently from one clustered state to the other, and in doing
so forces it to spend some time in the unstable symmetric state as well (cf.
the time series in Figure 3.1, middle left).

On the other hand, far away from the critical point the clustering is very
pronounced, even more so than in the case of N = 300 particles. This is due
to the small shaking strength here, which leads to an enhanced clustering [2,
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3].
The breakdown of the mean-field behavior becomes even more evident

for N=50 (Figure 3.2, bottom left). At shaking frequencies above fc ≈ 26
Hz, the symmetric state is stable. Upon decreasing the driving frequency
below fc, the particles attempt to cluster in one of the compartments – with
many intermittent switches from one compartment to the other – but the
branches do not manage to form a fork anymore. In fact, a further decrease
of f makes the shaking strength so small that the particles (starting from
the symmetric distribution with 25 particles in each compartment) are not
able to overcome the separating wall anymore and they are frozen in the
initial state. This also explains the vanishing fluctuations for f ≤ 17 Hz.

If alternatively we start out from the clustered state (with all 50 parti-
cles in the left compartment) we get the transition diagram of Figure 3.2,
bottom right. Up to f = 18 Hz the particles remain frozen in the clustered
configuration, followed by a regime where half-grown clusters are intermit-
tently switching from one compartment to the other (19 Hz ≤ f ≤ 25 Hz),
until finally the symmetric distribution becomes stable at fc ≈ 26 Hz.

3.3 Construction of the map

3.3.1 Flux function

We will now proceed to reconstruct the flux function from the MD data,
i.e., the outflow of particles from a compartment as function of its particle
content. In contrast to the simulations used to create the time series in
Figure 3.1, where the particles initially were distributed equally over the two
compartments followed by simulating for a long time, this time we sweep
through different initial distributions, in order to get sufficient statistics
also for the improbable states. The sampling interval is synchronized to the
frequency of the shaking, in order to obtain the outflow of particles during
one complete shaking cycle, and hence the discrete time map of equation
(3.3).

We checked that the outflow of particles after a shaking cycle is uncorre-
lated to the outflow in the previous stroke. The particle outflow is therefore
a Markovian process [9], only depending on the number of particles in the
compartment at the start of the shaking cycle (and not on previous particle
numbers at earlier strokes), justifying the form of the mapping in equation
(3.3).

For every initial distribution, 20 pre-strokes are carried out with an in-
finitely high wall separating the compartments, enabling the particles within
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Figure 3.3: Contour plots showing the probability density of having a given outflow
of particles from a compartment as a function of the number of particles N1 in
the compartment, for f=50Hz (a), f=55Hz (b) and f=70Hz (c), all at driving
amplitude a=1mm. The probability density has been normalized to 1 for each
value of N1 (integrating along a vertical line in the figure) and its value can be read
off from the color bar. The thick, gray backbone line corresponds to the averaged
particle flux F (N1), which can slightly differ from the most probable flux. The
plots are based on MD simulations during 20,000 driving strokes.
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each compartment to equilibrate. The wall is then abruptly reduced to 3
cm, after which 20 more strokes are carried out. The results from these
last 20 strokes are used to determine the outflow shown in Figure 3.3. This
procedure is repeated 1000 times for different initial conditions to get good
statistics.

Figure 3.3, for N = 300 particles, contains the results for f=50 Hz
(a), f=55 Hz (b), and f=70 Hz (c). As expected the outflow is seen to
increase with the shaking strength. The gray scale indicates how probable
a given outflow is for a compartment containing Ni particles (i = 1, 2). The
thick, solid line corresponds to the average outflow of particles, which is
the MD analogue of the Eggers flux function F (Ni) with zero noise. Just as
predicted by Eggers’ theory, the average outflow is a one-humped function of
Ni, which is indeed an essential prerequisite for the clustering phenomenon
to occur [2]. However, where the theoretical Eggers function has the form
F (Ni) ∝ N2

i exp(−BN2
i ), the reconstructed flux function starts out from

Ni = 0 with a power smaller than quadratic. This can be traced back to the
fact that in the Eggers theory the dissipation was taken to result from the
binary collisions between the particles only (the frequency of which grows
as N2

i ), whereas in reality also the collisions of the particles with the walls
(linear in Ni) contribute [12]. At low densities (Ni → 0) the particle-wall
collisions even become the dominant source of dissipation.

A dynamical equilibrium between the compartments (not necessarily sta-
ble) is obtained when the average flux of particles going from 1 → 2 is bal-
anced by the flux in the opposite direction 2 → 1. In Figure 3.4 we therefore
plot the averaged flux of particles leaving compartment 1 (black curve, start-
ing out from zero at N1 = 0) together with the flux from compartment 2
(gray curve, starting out from zero at N1 = 300, i.e., N2 = 0): We do so
for f=50 Hz (a), f=55 Hz (b), and f=70 Hz (c). Where the two curves
intersect the total flux vanishes and the system is in equilibrium.

In the first plot (f=50 Hz) three equilibrium points can be discerned, cor-
responding to the (unstable) symmetric distribution {N1 = N2 = 150} and
the two stable clustered states {N1 ≈ 25, N2 ≈ 275} and {N1 ≈ 275, N2 ≈
25}. The second plot (f=55 Hz) is close to the critical frequency and the
three equilibria are on the verge of merging into one, i.e, into the symmetric
distribution. In the third plot (f=70 Hz) the symmetric equilibrium is the
only one left and has become stable in the process.
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Figure 3.4: The averaged fluxes F (N1) (black) and F (N2) (gray) in a two-
compartment system, obtained from MD simulations for f=50Hz (a), f=55Hz (b)
and f=70Hz (c) with a=1mm. Where the two curves intersect, the flux of particles
out of compartment 1 (black, starting out from zero at N1 = 0) is balanced by the
particles it receives from compartment 2 (gray, starting out from zero at N1 = 300,
i.e., N2 = 0).
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Figure 3.5: The net flux G(N) = −F (N1) + F (N2) (left column) and its aver-
age 〈G(N)〉 = 〈−F (N1) + F (N2)〉 (right column) obtained from MD simulations
for f=50Hz (top row) , f=55Hz (middle row) and f=70Hz (bottom row). The
amplitude of the driving is a=1mm.



50 Chapter 3. Small-number statistics near clustering transition

3.3.2 Stochastic map

In any equilibrium state the net flux G(N1) = −F (N1)+F (N2) is zero. This
quantity is shown in Figure 3.5 for the same three frequencies as in Figures
3.3 and 3.4. The left column shows the net flux and the right column the
averaged function 〈G(N)〉 = 〈−F (N1) + F (N2)〉. Since we have sampled
the flux per stroke of the driving, this averaged net flux is precisely the
mean-field term of the mapping introduced in equation (3.3):

〈G(Ni)〉 = M(Ni) . (3.4)

The form of M(Ni) does not only give information about the position of the
equilibrium states, but also about their stability. In the clustered regime,
M(Ni) takes the form of an s-shaped curve (Figures 3.5, top row). Three
points of zero net flux exist, corresponding to the two asymmetric equilibria
towards the sides (clustered states) and the symmetric distribution in the
middle. From the sign of M(Ni) on the intervals between these zeroes, it
immediately follows that the clustered states are stable and the symmetric
one is unstable. E.g., for 20 � N1 � 150, the net flux into compartment 1 is
negative: This means that during the following strokes compartment 1 will
be depleted even more until it reaches the equilibrium at N1 ≈ 20, where
the average net flux vanishes.

Closing in upon the critical frequency, the s-shaped curve is stretched
out around the symmetric distribution (Figure 3.5, middle row). At the
critical frequency itself, M(Ni) becomes very flat and has an inflexion point
at the symmetric solution. At this point the two clustered states recombine
with the symmetric state.

Above the critical frequency only this symmetric equilibrium survives
(Figure 3.5, bottom row), which is clearly stable now: For N1 > N/2 the
averaged net flux is negative, depleting the compartment until the equilib-
rium at N1 = N/2 is reached. Equivalently for N1 < N/2 the average net
flux is positive and the compartment will gain particles until N1 = N/2.

Also the fluctuation term (ξ(Ni)) of the mapping in equation (3.3) can
be obtained from Figure 3.5. Making a cut in the vertical direction through
the contour plots in the left column, the width of the distribution at any
given value of Ni corresponds to the magnitude of the fluctuations at that
point, i.e., to ξ(Ni).

We find that the distributions along the vertical cuts follow an approxi-
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Figure 3.6: The standard deviation σ(N1) [or equivalently, the fluctuation term
ξ(N1) in equation (3.3)] of the roughly Gaussian profiles that one gets by vertically
cutting through the contour plots of the net flux in Figure 3.5; the measurements are
given by the symbols, which have been connected to guide the eye. The magnitude
of the fluctuations is seen to be highest around the symmetric distribution (Ni =
N/2) and grows mildly with increasing driving frequency f = 50, 55, 70 Hz. The
thin fluctuating lines represent the quantity 2.8[F (N1) + F (N2)]1/2 (with F (N1)
and F (N2) taken from Figure 3.4), which follow the curves of σ(N1) reasonably
well, in agreement with Eggers’ prediction equation (3.6).

mately Gaussian profile, with standard deviation

σ(Ni) =
√
〈G2(Ni) − 〈G(Ni)〉2〉 ≡ ξ(Ni) . (3.5)

The standard deviation σ(Ni) is highest in the middle region (near Ni =
N/2) as can be seen in Figure 3.6, and decreases towards the sides. We also
observe that σ(Ni) grows with increasing frequency, though less strongly
than the magnitude of the average flux (cf. Figures 3.3 and 3.4). This is
in agreement with our earlier observation that the relative influence of the
fluctuations diminishes at high frequencies above the critical value fc.

It is interesting to compare our results with the prediction of Eggers [2]
concerning the amplitude of the fluctuations. He assumed that the parti-
cles passing from one compartment to the other are uncorrelated, which is
equivalent to saying that ξ(Ni) is uncorrelated Gaussian white noise [2, 13].
Under this assumption the second moment is given by (cf. equation (8) in
Reference [2], properly integrated over time and normalized to hold for the
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actual particle numbers N1 and N2 = N −N1 instead of particle fractions):

σ2(N1) = K2(f)[F (N1) + F (N − N1)] , (3.6)

with K(f) a factor that may depend on the frequency f (but not on the
total number of particles N). In Figure 3.6 we see that this relation is
satisfied reasonably well in our simulations, with K(f) = 2.8 for each of the
frequencies f = 50, 55, 70 Hz.

3.4 Potential formulation

In order to quantify the relative influence of the terms M(Ni) and ξ(Ni), we
define a potential related to the average net flux M(Ni). In the unclustered
regime this potential has a single minimum at the symmetric distribution,
whereas in the clustered regime it becomes a double-well potential with
a barrier in the middle. By comparing the height of this barrier to the
amplitude of the noise term ξ(Ni), we have a direct measure for the relative
importance of the fluctuations.

The average net flux M(Ni) can be interpreted as a force, working to-
wards one compartment. With this force one can associate a potential V (Ni)
as follows:

M(Ni) = −dV (Ni)
dNi

, (3.7)

or equivalently:

V (Ni) = −
∫ Ni

N/2
M(N ′

i)dN ′
i . (3.8)

In Figure 3.7 we have plotted the potentials corresponding to the average
net fluxes in Figure 3.5, for N = 300 particles. In fact, the raw net flux from
the MD simulations (i.e., from the M depicted in Figure 3.5) was fitted to
a cubic polynomial, yielding a potential of the following general form:

V (Ni) = V0 + aN2
i + bN4

i . (3.9)

The values of V0, a, and b for each potential are given in the caption of
Figure 3.7.

For strong shaking (f = 70 Hz, Figure 3.7c) the potential has one sin-
gle minimum at Ni = 150, representing the stable symmetric state. Upon
reducing the frequency, the bottom of the potential becomes flatter and flat-
ter, giving the fluctuations ample opportunity to have a big effect on the
particle numbers in each compartment. At the critical shaking frequency
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Figure 3.7: The potential V (Ni) corresponding to the average net fluxes for the
same three frequencies as in Figure 3.5. (a): For mild shaking (f = 50 Hz) the
potential consists of two wells (representing the clustered states) separated by a
barrier. (b): At the critical shaking frequency (close to f = 55 Hz) the barrier
disappears. (c): For higher shaking strengths the potential has just one single
minimum at the symmetric state Ni = N/2 (f = 70 Hz). The data have been
fitted to a quartic potential as in equation (3.9); the coefficients {V0, a, b} take on the
values {−36.34,−0.0848, 2.77×10−6} for f = 50 Hz, {−20.68,−0.0248, 1.66×10−6}
for f = 55 Hz, and {43.48, 0.1396,−8.65 × 10−7} for f = 70 Hz.
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itself (close to f = 55 Hz, Figure 3.7b) the minimum in the center becomes
a maximum (the symmetric state becomes unstable) and the potential de-
velops two wells corresponding to the clustered states. So in the clustered
regime (f = 50 Hz, Figure 3.7a) the potential consists of two wells separated
by a barrier in the middle.

As long as the amplitude of the fluctuations is larger than the height of
the potential barrier, the clustering dynamics into either well will be inter-
rupted (at irregular time intervals) by a statistical fluctuation that drives
the system back to the symmetric state (and from there again into any of
the two wells). This is exactly the intermittent behavior that we observed
in the MD simulations for frequencies just below the critical value fc. In
Figure 3.8 the amplitude of the fluctuations is compared to the height of
the potential barrier, as function of f , for N = 300, 100, and 50 particles.
It is seen that the region where the fluctuations are larger than the barrier
grows with decreasing total particle number N , just as expected.

When the driving frequency is reduced further below fc, the height of
the potential barrier increases (and at the same time the amplitude of the
fluctuations decreases) until at a certain point the fluctuations are not able
to kick the system out of the well anymore. It is at this point (for N = 300
and 100 particles) that the mean-field behavior sets in. For N = 50 the
system never reaches such a point.

The situation is further illustrated in Figure 3.9a, which shows the bi-
furcation diagram for N = 300 particles (cf. the backbone in Figure 3.2,
top): Just below the critical frequency fc the points in this diagram do not
follow the mean-field behavior (the dashed curve, branching off as (fc−f)2)
but stay closer to the symmetric state. This is the result of the fact that
the system still spends a considerable part of the time near the symmetric
state, forced by the fluctuations. The mean-field behavior is seen to set in
around f = 53 Hz. This is illustrated also in the inset of Figure 3.9a, where
the dashed straight line represents the mean-field prediction.

The deviations from the mean-field behavior are much more apparent
for smaller values of N , as in Figure 3.9b for N = 100. Here the critical
value lies around fc = 32 Hz, but the mean-field behavior does not set in
before f ≈ 28 Hz.

The same potential formulation can also be applied when the total num-
ber of particles is smaller. In Figure 3.10 we show two typical potentials
for N = 100 particles, at driving frequencies f = 25 Hz (clustered regime)
and f = 36 Hz (symmetric regime). These have the same form as those for
f = 50 Hz and f = 70 Hz with N = 300 particles (see Figure 3.7, right-
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Figure 3.8: The amplitude of the fluctuations (represented by the maximal stan-
dard deviation σ(N/2), i.e. ξ(N/2), see Figure 3.6; squares connected by dashed
line) and the height of the potential barrier hb(N/2) (cf. Figure 3.7; dots con-
nected by solid line) as function of the driving frequency f , for N = 300, 100, and
50 particles (top to bottom). There is a region below the critical frequency fc (at
which the barrier height becomes non-zero) where the fluctuations are still larger
than the barrier height, which means that the system will switch intermittently
from one potential well to the other, thus frustrating the mean-field behavior. The
size of this region (and hence the overall influence of the fluctuations) grows for
decreasing particle number N . For N = 50 particles the fluctuations are seen to
dominate at all frequencies.
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Figure 3.9: (a) The bifurcation diagram for N = 300 particles, driven at an
amplitude of a = 1 mm. Just below the critical frequency fc ≈ 56 Hz, the mean-
field behavior (indicated by the dashed line) is slightly thwarted by the statistical
fluctuations in the system. The inset shows the same diagram with the quantity
along the vertical axis squared: the mean-field behavior now is represented by a
straight line. (b) The same for N = 100 particles. It is seen (also in the inset) that
the mean-field behavior is much more disturbed than in (a).
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most column), but the absolute values differ considerably. In particular, the
height of the potential barrier for N = 100 is much smaller than for N = 300,
which means that it is much easier for the fluctuations to overcome it.

It may also be noted that the numerical data for N = 100 are coarser
than those for N = 300. This is due to a practical complication at small
particle numbers: the increased influence of the fluctuations makes it neces-
sary to run the MD simulations for a much longer time before one obtains
a reliable average net flux M(Ni), needed for the potential V (Ni). This
problem becomes even worse for the case of N = 50 particles.

3.5 Time correlation

A useful indicator for a phase transition in equilibrium statistical physics is
the normalized time autocorrelation function C(τ) [9, 11, 14]:

C(τ) =
〈δn(t)δn(t + τ)〉t

〈δn2(t)〉t , (3.10)

where δn(t) ≡ n(t) − 〈n(t)〉t and the index t indicates that we take the
temporal average. The function C(τ) is a measure of how correlated the
signal n(t) is to its value n(t + τ) a time τ later. It is 1 when the signal
is totally correlated (for τ = 0), and fluctuates around zero when all corre-
lations are lost. The typical lifetime of correlations in the signal τ0 can be
defined as the value of τ for which C(τ) becomes smaller than e−1(≈ 0.37),
corresponding to the standard mean-field form of the autocorrelation func-
tion Cmf (τ) = e−τ/τ0 [11, 15–17]. Alternatively, one may define τ0 via the
slope of C(τ) as follows:

1
τ0

= −dC(τ)
dτ

∣∣∣
τ=0

, (3.11)

which is the decay rate of the correlations at short timescales. Since we
cannot take the validity of the mean-field approximation for granted here,
we will use this second definition of τ0.

For a standard second-order phase transition the lifetime τ0 is known
to diverge at the critical point, or equivalently, the inverse timescale 1/τ0

(the decay rate of the correlations) goes to zero. We want to see to what
extent this still holds for the clustering transition in our granular system,
for decreasing values of the particle number N .

For this purpose, we have to determine averages over the time signal.
This poses no difficulties in the regimes where the particles are either clearly
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Figure 3.10: The potential V (Ni) for N = 100 particles at mild shaking (f = 25
Hz) and strong shaking (f = 36 Hz), corresponding to the symmetric and clustered
regimes, respectively (cf. Figure 3.2, top right). The raw data from the average net
flux have been fitted to a quartic polynomial as in equation (3.9); the coefficients
{V0, a, b} are {1.90,−0.0231, 5.81 × 10−6} for f = 25 Hz, and {1.00, 0.0442, 2.14 ×
10−6} for f = 36 Hz.
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clustered or not clustered at all, but in the intermittent regime just below
the critical frequency (see Figure 3.1, middle) the mean value 〈n(t)〉 (or
equivalently, 〈N1(t)〉) is an ambivalent quantity, since the particle numbers
fluctuate between two different equilibrium points. That is why in this
regime we work instead with the related quantity

ε(t) = |N
2

− N1(t)| + N

2
, (3.12)

which makes all the data fluctuate around only one equilibrium point (namely
the upper one, between N/2 and N). The corresponding correlation function
takes the form:

C(τ) =
〈δε(t)δε(t + τ)〉t

〈δε2(t)〉t . (3.13)

The result is depicted in Figure 3.11 for N = 300 particles. The autocor-
relation goes from 1 downward, at different rates for different frequencies. As
expected, the slowest decrease is observed for f around the critical frequency
fc ≈ 56 Hz.

From these curves, one can obtain the corresponding decay rates 1/τ0(f)
(equation (3.11)) that are plotted in Figure 3.12. This figure shows the decay
rates not only for N = 300 particles (top), but also for N = 100 (middle)
and N = 50 (bottom). Below the critical frequency fc we have evaluated
1/τ0 both from the raw data (with C(τ) given by equation (3.10), solid stars)
and from the intermittency-corrected data (with C(τ) as in equation (3.13),
open stars). As explained above, just below fc one should work with the
corrected, open symbols; for f � fc the intermittency disappears from the
signal and the solid and open symbols simply coincide.

The standard behavior, namely that 1/τ0 goes to zero at the critical
frequency, is still clearly present for N = 300 (see the dashed lines). In fact,
from this plot of τf we get the most accurate determination of the value of
the critical frequency fc so far, namely fc = 55.7 Hz.

The decay rate is seen to approach zero linearly, as 1/τ0 ∝ |f − fc|γ
with the critical exponent γ = 1 known from mean-field theory [15]. In the
symmetric regime (f > fc) this linear behavior extends relatively far beyond
the critical point, whereas in the clustered regime (f < fc) it breaks down
much more quickly. This is in agreement with the Landau theory for second-
order phase transitions and is due to the nonlinearities that come into play as
soon as the system moves away from the symmetric equilibrium [11, 15, 16].

Also for N = 100 (Figure 3.12, middle plot) the decay rate 1/τ0 is still
seen to tend to zero linearly at the critical point, which on the basis of this
plot is estimated to lie at fc ≈ 28.6 Hz. This is considerably smaller than
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Figure 3.11: The normalized autocorrelation function C(τ) for N = 300 particles,
for various driving frequencies f (indicated in the plot). The curves all decrease
from the initial value 1, but at different rates depending on f . Close to the critical
frequency fc ≈ 56 Hz the decay is slowest. The curves corresponding to f < fc are
dashed, to distinguish them more easily from those for f > fc (solid lines).

the value fc ≈ 32 Hz we had found earlier from the bifurcation diagram for
N = 100 in Figures 3.2 and 3.9b.

Finally, for N = 50 particles (Figure 3.12, bottom) the mean-field be-
havior breaks down, as expected. A proper determination of the critical
point fc is no longer possible from this plot, neither can one reliably derive
a critical exponent γ.

3.6 Conclusion

In conclusion, we have seen that statistical fluctuations profoundly influence
the clustering behavior of a compartmentalized granular gas. As long as
the number of particles (N) is sufficiently large, the clustering still largely
follows the lines of a standard second-order phase transition (i.e., a pitchfork
bifurcation with critical exponent β = 1/2). For smaller N , however, the
enhanced influence of statistical fluctuations breaks the mean-field behavior.
We demonstrated this by means of bifurcation diagrams (Figure 3.2) and
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Figure 3.12: The correlation decay rates 1/τ0 as function of the shaking frequency
for N = 300, 100, and 50 particles respectively. The standard behavior of 1/τ0

going to zero at the critical frequency fc is still recognizable for N = 300 and 100,
but deteriorates for N = 50. The plots for N = 300 and N = 100 show that 1/τ0

approaches zero linearly, i.e., as |fc−f |γ with the mean-field critical exponent γ = 1.
The solid stars are based on the raw data; the open ones have been corrected for
the intermittency that occurs just below the critical point, according to the recipe
given in the text (see equations (3.12)-(3.13)).
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also via the correlation time τf at the clustering transition (Figure 3.12).
In order to model the fluctuations in our system, we constructed the

mapping according to equation (3.3) (describing the outflow of particles
from a compartment per shaking cycle) in which the mean-field flux and
the fluctuations appear as two separate terms. This separation enables us
to directly compare the relative importance of both contributions to the
dynamics and to study how the fluctuations start to dominate for decreasing
particle number N .

Our results show that already at N = 300 (i.e., much less than the 1023

particles of textbook statistical physics) mean-field results and the Eggers
flux theory hold very nicely. Only for smaller N the finite-number noise
starts to dominate, and the mean-field description breaks down.
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Chapter 4

Competitive clustering in a
bidisperse granular gas §

Abstract

A compartmentalized bidisperse granular gas is experimentally found to cluster
competitively: By tuning the shaking strength, the clustering can be directed either
towards the compartment initially containing mainly small particles or to the com-
partment containing mainly large particles. Here, the conditions under which this
competitive clustering occurs are studied experimentally, numerically (by means
of molecular dynamics simulations), and analytically. A theoretical flux model is
derived that quantitatively accounts for the observed phenomena.

4.1 Experimental observations

The clustering behavior of a granular gas in compartmentalized systems
as described in chapter 2 and 3 concerns granular gases consisting of (ap-
proximately) identical particles. In this chapter we will study the clustering
behavior of a bidisperse mixture of large and small particles. The crucial ob-
servation is that due to the fact that bidisperse granular gases can demix, the
clustering scenario becomes richer than for monodisperse granular gases. A
compartmentalized bidisperse granular gas is experimentally found to clus-

§Adapted from: René Mikkelsen, Devaraj van der Meer, Ko van der Weele, and Detlef
Lohse, Competitive Clustering in a Bidisperse Granular Gas, Phys. Rev. Lett. 89, 214301
(2002), and René Mikkelsen, Devaraj van der Meer, Ko van der Weele, and Detlef Lohse,
Competitive clustering in a bidisperse granular gas: Experiment, molecular dynamics, and
flux model, Phys. Rev. E 70, 061307 (2004).
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A B
Figure 4.1: Image from the experiment with a bidisperse mixture of 300 large
(radius = 2.5 mm) and 600 small (radius =1.25 mm) steel beads that is driven
vigorously; no clustering takes place here. The shaking frequency f = 110 Hz, and
the shaking amplitude a is 1.0 mm. Only the lower third of the tube is shown, since
particles rarely go up all the way to the top lid.

ter competitively: By tuning the shaking strength, the clustering can be
directed either towards the compartment initially containing mainly small
particles or to the compartment containing mainly large particles. An exam-
ple of this competition was shown in the introductory chapter (Figure 1.1)
for a mixture of two different types of vibrated candy. In this chapter, the
conditions under which this competitive clustering occur are studied exper-
imentally, numerically (by means of molecular dynamics simulations), and
analytically. A theoretical flux model is derived that quantitatively accounts
for the observed phenomena.

We will start here with a discussion of the experimental results for bidis-
perse mixtures; these will motivate the work in subsequent sections of this
chapter. Our experimental setup consists of a cylindrical glass tube with
inner diameter 11.2 cm and height 42.2 cm, divided into two equal compart-
ments, labelled A and B, by a wall of height 6 cm. The tube is filled with
grains and mounted on a shaker, which brings the system into a gaseous state
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moderate shaking

 (low D, regime I)

    mild shaking

(high D, regime II)

A Bt = 10s

t = 15s

t = 30s

t = 60s

t = 825s

t = 900s

t = 0s

Figure 4.2: Images from two experiments with a bidisperse mixture of steel beads,
starting from the same initial condition; again only the lower third of the tube is
shown. For relatively strong shaking (left column) the clustering is directed towards
the left compartment, whereas for mild shaking (right column) it goes into the right
compartment. The shaking frequency in the left column is f = 60.0 Hz, and in
the right column 37.5 Hz, while the peak-to-peak amplitude in both cases is 2a =
2 mm. The initial condition (topmost picture) is {180 large, 200 small} in the left
compartment, and {120 large, 400 small} in the right one. With the radius of the
large beads (r1 = 2.50 mm) being twice that of the small ones (r2 = 1.25 mm), this
means that initially 55% of the total particle mass is in the left compartment.
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through vertical, sinusoidal vibrations with frequency f and amplitude a.
We will take these two parameters together in the inverse shaking strength,
which is proportional to 1/(af)2. In fact, we define D as 16π gh

(2af)2
(1− ε2)2,

where g is the gravitational acceleration, h is the height of the wall and ε
is the coefficient of restitution. This expression comes from balancing the
energy dissipated in grain-grain collisions with the energy input from the
shaker; for more details see section 4.3.5. In the experiments presented
below, we have h = 6.0 cm and ε = 0.9.

Figures 4.1 and 4.2 show images from experiments with a mixture of P1

= 300 stainless steel beads of radius r1 = 2.50 mm and P2 = 600 smaller
ones of r2 = 1.25 mm. For very strong shaking (small D) the large and
small particles distribute themselves uniformly over the two compartments
(Figure 4.1). This will be denoted as regime 0. In this case, the dissipation
from the particle collisions is overwhelmed by the energy input into the
system. But for moderate and mild shaking strengths, clustering occurs as
shown in Figure 4.2. Note that in both cases the same, asymmetric, initial
distribution is taken: {180 large, 200 small} in the left compartment (A),
and {120 large, 400 small} in the right compartment (B). This means that in
the initial situation 55% of the total particle mass is in compartment A. The
peculiar feature now is that depending on the precise value of the inverse
shaking strength D, the cluster either ends up in the left compartment (A)
or in the right compartment (B). Clearly, the outcome of the experiment is
strongly dependent on the shaking strength.

When we reduce the shaking strength below a certain threshold, starting
out from the same initial state, the particles form a cluster in compartment
A, see Figure 4.2, left column. This is regime I. The direction of the cluster-
ing is towards the larger total particle mass. The reason is as follows: Many
of the small beads quickly cluster in compartment A, where the dissipation
is highest due to the greater number of large beads, which (with their larger
mass and surface area) act as “coolers”. The remaining beads in compart-
ment B are able to jump higher than before, since there are fewer collisions,
and also large ones now start to make it over the wall into compartment A.
After about 20 seconds to a minute (depending on the value of D) the final
state is reached: a dynamical equilibrium with practically all large particles
and most of the small ones in compartment A and only a few rapid small
particles in compartment B.

For very mild shaking, however, the same initial condition surprisingly
leads to a cluster in the other compartment: see Figure 4.2, right column.
We will call this regime II. The series of events is as follows: At first the
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large particles stay close to the floor, transferring energy from the vibrating
bottom to the smaller ones above them, which thereby gain relatively high
velocities. This is reminiscent of the demonstration experiment in which one
puts a tennis ball on top of a basket ball and lets them drop together: when
they hit the ground, the tennis ball is “launched” and jumps much higher
than its release height [11]. The effect is stronger in the left box (which
has more large particles) than in the right box, and thus the small beads
go preferentially into the latter (B). As a consequence, the remaining parti-
cles in compartment A become more mobile, and after a couple of minutes
the first large beads also begin to make it over the wall into compartment
B, where they are immediately swallowed by the developing cluster. With
every particle that leaves compartment A, the process progressively speeds
up. In the experiment of Figure 4.2, right column, the clustering is complete
after 15 minutes.

An overview of the competitive clustering transition for a range of shak-
ing strengths using the same particles and initial distribution as in Figure
4.2 is shown in Figure 4.3. Remember that the parameter D is proportional
to the inverse shaking strength, such that a small D value corresponds
to strong shaking (regime 0, D < 10). For moderate shaking (regime I,
10 < D < 140) we find clustering in compartment A, and for mild shaking
(regime II, D > 140) the clustering takes place in compartment B. The
transition between regime I to II is quite abrupt.

The experiments thus show that clustering in a bidisperse gas has a rich
phenomenology and in the remainder of this chapter we will give a quan-
titative description of this competitive clustering phenomenon. First of all
we will perform molecular dynamics (MD) simulations, which allow us to
probe in detail the granular temperature distribution and competitive clus-
tering for a wide range of parameters. In the simulations we will work with
particles of the same material, which thus have the same material density ρ
and will be taken to have one constant coefficient of restitution ε; that is, we
neglect the dependence of ε on the velocity and size of the particles [12, 13].
This assumption is found to not influence the phenomenology substantially,
illustrating the robustness of the experimentally observed phenomena. It
is important to realize, that even though the clusters in Figure 4.2 look
very dense, this is an optical illusion due to the fact that the particles are
projected onto a plane; in reality they are scattered throughout the three-
dimensional compartment. We therefore take the number of particles such
that at rest they form one to two layers on the bottom of the container.
This number is sufficiently large to keep the relative effect of statistical fluc-
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Figure 4.3: Experimental results showing the three different regimes 0, I, and
II, for our setup filled with a mixture of stainless steel beads: P1 = 300 large
ones with radius r1 = 2.5 mm, and P2 = 600 small ones with radius r2 = 1.25 mm.
Every new run was started from the same initial condition: {180 large, 200 small} in
compartment A, and {120 large, 400 small} in B. The particle numbers Ni (i = 1, 2)
are given relative to the symmetric solution: Ni − 1

2Pi. The squares correspond
to the large beads, and the diamonds to the small ones. Solid symbols refer to
compartment A, and open symbols to B; note that every measurement is thus
represented by two points, which accounts for the mirror-symmetry of the plot.

tuations limited and thus to allow for a mean field description. On the
other hand, it is small enough to keep the gas reasonably dilute even in the
clustered situation.

4.2 MD simulations for one compartment

4.2.1 Numerical scheme

For the simulations we use a three-dimensional event driven code: Between
two events (collisions) the particles move freely, describing parabolic paths
under the influence of gravity, until the next collision occurs. A collision
can be either between particles or between a particle and a wall, and is
signalled by a spatial overlap of the two. At such an event, the velocities
of the particles after contact are computed from the velocities just before
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contact using Newton’s laws.
The particles are taken to be hard spheres. This means that we ig-

nore any deformations, which for the steel particles used in our experiments
is a reasonable approximation. The coefficient of normal restitution ε for
particle-particle collisions is taken to be constant, ε = 0.85, and the same for
the large and small beads. The coefficients of tangential restitution and dy-
namical friction are adjustable in the code, but for the simulations presented
here they are set equal to their ideal (dissipationless) values.

The coefficients of restitution between the particles and the walls and
bottom can be adjusted independently. For the coefficient of normal restitu-
tion we use 0.95, obtained from test experiments in which we let the beads
bounce on solid plates of glass (representing the walls) and aluminum (for
the bottom).

For simplicity the experimental setup is simulated as a rectangular box
with infinitely high side walls. The ground area of each compartment and
the height of the wall between them is the same as in the actual experiment.
The bottom is vibrated vertically with adjustable frequency f and amplitude
a following a sinusoidal wave form.

4.2.2 Height distribution and granular temperature

One of the main assumptions in the bidisperse flux model is that the granular
temperatures T1 and T2 of the large and small particles are independent of
the height z. This assumption leads to the barometric height distribution,
just as in an ordinary gas. That is, the number densities of both species (i
= 1,2) are taken to decay exponentially with z:

ni(z) = ni(0)e−migz/Ti . (4.1)

The temperature Ti is defined in analogy with the standard relation from
statistical physics 1

2mi〈v2
i 〉 = 3

2kBTi, where the Boltzmann constant kB is to
be replaced by a mere number. Here we will choose kB = 1. So Ti ≡ 1

3mi〈v2
i 〉

is directly proportional to the mean kinetic energy of the particles of species
i. Its value is determined by a balance between the input of energy due to
the vibrating bottom and the dissipation of energy via the collisions [14].

The second, bolder assumption in the model is that T1 = T2(= T ).
The large and small particles are (per compartment) taken to be in ther-
mal equilibrium with each other at the same granular temperature, such
that equation (4.1) simplifies to ni(z) = ni(0) exp{−migz/T}. For size ra-
tios ψ close to unity (the monodisperse limit) this is expected to hold well,
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Figure 4.4: Molecular Dynamics (MD) simulation results for a monodisperse gran-
ular gas (size ratio ψ = 1) shaken at frequency f = 70 Hz and amplitude a = 1
mm. Shown are the particle density (left) and the granular temperature (right)
as function of the height z. The ground area of the container is Ω = 100 cm2

(equivalent to the experimental setup of Figure 4.2 without the central wall), the
number of particles is P=900, their radius is 1.25 mm, and the plots are based on
106 numerical snapshots of the gas in its steady state, sampled at a rate of 1000
per second. The scale used in these plots is the same as in Figures 4.5 and 4.6, to
allow for a comparison with the bidisperse case.

but for large values of ψ the correspondence will deteriorate. Several re-
cent studies [15–20] have shown that energy equipartition generally breaks
down in bidisperse granular gases, with the heavier particles having a higher
temperature.

In particular, Wildman and Parker [15] used positron emission parti-
cle tracking to experimentally determine the granular temperature in a vi-
brofluidized mixture of glass beads with radii r1 = 2.5 mm and r2 = 2.0
mm (ψ = 1.25). They found that the temperature of the larger particles
was always higher than that of the smaller ones. Keeping the total particle
mass in the system the same, the temperature ratio T1/T2 could be raised by
increasing the ratio (P1/P2) between the numbers of large and small beads.

To check the temperature ratio and the density profiles in our own sys-
tem, we performed MD simulations. In Figures 4.4-4.6 the results are shown
for ψ = 1, 2, and 3, respectively.

In all three cases log(ni(z)) (for i =1 and 2) follows an approximately
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Figure 4.5: Same as Figure 4.4, but now for a bidisperse granular gas consisting of
300 large and 600 small particles with size ratio ψ = 2. The small particles have the
same size as those in Figure 4.4, i.e., r2 = 1.25 mm. The density profiles of both the
large and the small particles follow straight lines, indicating an exponential decay
with z (barometric height distribution). The right plot shows that the granular
temperature of the large beads is larger than that of the small beads. The slanting
lines at the top of the temperature profiles correspond to free parabolic flights of
single particles; see also Figure 4.7.

straight line, indicating that the density profiles of both large and small
beads indeed decay exponentially, with the large-particle profile decaying
faster in agreement with equation (4.1). Only at small z do the profiles
deviate significantly from the straight line. This is caused by the vibrating
floor: Many of the particles here have a relatively high energy, since they
have just been kicked by the floor but have had no chance yet to pass on
their energy to the other particles. So the temperature close to the bottom
is high and this means that the curve of log(ni(z)) flattens. Moreover, a very
narrow region immediately above the floor is swept clean by the vibrating
bottom itself.

An interesting observation is that the small particles in the bidisperse
situations (Figures 4.5 and 4.6) reach considerably larger heights and have a
higher temperature than the same particles in the monodisperse situation of
Figures 4.4. This is the “tennis ball on basketball” effect mentioned earlier.
The maximum height reached by the small particles increases with ψ, i.e.,
with the growing size of the larger particles.

The above characteristics are also reflected in the temperature profiles.
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Figure 4.6: Same as Figure 4.5, but now for size ratio ψ = 3. The densities
of the large and small particles still follow an approximately exponential decay.
The temperature shows considerable deviations from a constant value especially
for the large particles (see also the inset, in which the same profiles are shown on a
different scale); however, the upper region of the temperature profile is made up by
only a few particles and has hardly any statistical weight. It is apparent that the
temperature difference between the large and small particles has increased with ψ,
cf. Figure 4.8.

The temperature is found to be roughly constant except at the bottom and
top. Close to the bottom the temperature is significantly higher, especially
for the large particles. That this is indeed caused by the vertical kicks from
the vibrating floor is shown in Figures 4.7, where the individual x, y, and z
components of the temperature are given (for ψ = 2): For the large particles
the z component close to the bottom is seen to be almost three times as high
as the other two components.

In the bulk of the profile (the long central part) the temperature com-
ponents are roughly equal, which means that the velocity distribution is
approximately constant and isotropic here.

The upper part of the temperature profile shows considerable fluctua-
tions. The reason for this is that the particle density is rather low here, so
(a) the statistics is relatively poor and (b) the collisions between particles
are rare, which makes the equipartition of energy via collisions less effective.
In this region the mean free path of the particles increases rapidly with
height and their kinetic energy is primarily converted into potential energy
due to gravity and not lost in collisions.
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Figure 4.7: The x, y and z components of the granular temperature for the bidis-
perse mixture of Figure 4.5, ψ = 2. These temperature components are directly
proportional to the kinetic energies of the particles: Ti,x = 1

3miv
2
i,x , etc. (i = 1, 2

denoting the large and small particles, respectively).

In the uppermost region (above z = 0.9 m in Figure 4.7) we see the
ballistic behavior of an individual small particle that freely travels upward,
reaches the top (velocity in the z direction becomes zero at z = 1.10 m,
outside the plot) and goes down again. The velocity components in the x
and y direction remain practically constant during this parabolic flight [21].
A ballistic regime is also apparent in the temperature profiles of the larger
particles: two parabolic flights that go considerably higher than the rest
of the large particles and are not thwarted by the surrounding small ones
are clearly visible in Figure 4.5 (and Figure 4.7) around z = 0.22 − 0.35 m.
Indeed, the pronounced increase of the large-particle temperature toward
the top of their range is due to the the fact that the large particles observed
at these heights are the ones that have chanced to fly up straight from the
bottom, with no (or very few) collisions on the way up. The increase of the
temperature profile here thus roughly reflects the temperature peak at the
bottom.

The simulations show that the large particles have a higher temperature
than the small ones, in agreement with the results found in the recent liter-
ature on this subject [15–20]. In Figure 4.8 the temperature ratio T1/T2 as
estimated from our MD simulations, is given as a function of the size ratio
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Figure 4.8: Temperature ratio T1/T2, determined from MD simulations, as func-
tion of the size ratio ψ = r1/r2. The values are taken at z = 0.075 m, which lies in
the “constant” part of the large-particle temperature profile for each ψ.

ψ = r1/r2. The values in this plot hold at a height where the temperature
profiles of both species are approximately constant; in the present case we
have chosen z =0.075 m for each value of ψ. They can be read off directly
from the temperature profiles (see Figures 4.4-4.6), or indirectly from the
density profiles, by using the following relation between the slopes [from the
barometric height equation (4.1)] :

slope large-particle profile
slope small-particle profile

=
m1T2

m2T1
= ψ3 T2

T1
. (4.2)

Both methods yield the same value for the temperature ratio.
In summary, we find that both species are not in equilibrium with the

same granular temperature unless their mass ratio is one. On the other
hand, even for ψ = 2, where the corresponding mass ratio m1/m2 is 8,
the temperature ratio is still less than 1.7. Here the assumption of energy
equipartition (with T1/T2 = 1) is still a meaningful first approximation.

4.3 Flux model

4.3.1 Basic equations and approximations

The flux model describes the flow of large and small particles between the
compartments, as a function of the particle numbers in each compartment
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and of the shaking strength. It is a bidisperse generalization of Eggers’ model
for a monodisperse granular gas [8]. For its derivation we first consider the
gas in a single compartment and from its steady state behavior determine
the so-called flux function, i.e., the number of particles of each species that
leaves the compartment per unit time [22]. In order to keep the model
transparent, we make several strong approximations that are highlighted
below. Even though these approximations seemingly bypass the state of
the art in granular gas dynamics, the resulting model is definitely sufficient
to account for our experimental and numerical observations on competitive
clustering.

Barometric height distribution: The particles in each compartment are
taken to obey the following equation of state [23]:

pi = nikBTi , (4.3)

(the ideal gas law, with kB = 1 in the present context) and the momentum
balance

dpi

dz
= −migni , (4.4)

for both species i = 1, 2 separately. Combining these two equations under
the assumption that the granular temperature Ti = (mi/3kB)〈vi〉2 is inde-
pendent of z gives kBTidni/dz = −migni. Integration gives the barometric
height formula:

ni(z) = ni(0)e−migz/kBTi . (4.5)

In the previous Section we saw that this exponential distribution describes
the real situation remarkably well, given the fact that both the ideal gas
law (4.3) and the assumption that Ti is independent of z only hold in an
approximate sense. One might make the agreement even better by using a
more refined equation of state [24–26] and by letting T vary with z [27], but
this would make an analytical expression for the flux function very difficult
(if not impossible) while not affecting the resulting height distribution too
much.

Energy equipartition: The assumption that both species have the same
granular temperature (Ti = T for i = 1, 2) strictly speaking means that we
confine ourselves to size ratios ψ close to 1, see Figure 4.8. Nevertheless,
also for ψ = 2 and even for ψ = 3 the model turns out to give results that
closely agree with our experiments and MD simulations. This implies that
the inequality of T1 and T2 does not play an essential role in the competitive
clustering effect and the assumption T1/T2 = 1 may thus be viewed as
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an application of Occam’s razor in order to keep the theory as simple as
possible.

The density at ground level in equation (4.5) follows from the condition
Ω

∫ ∞
0 ni(z)dz = Ni:

ni(0) =
migNi

ΩkBT
, (4.6)

where Ni is the number of particles (of species i) in the compartment under
consideration and Ω is its ground area.

The temperature T should be interpreted as an average value for the
whole compartment. Its value is determined by balancing the energy in-
put via the vibrating bottom and the energy loss through the inter-particle
collisions (both per unit of time):

J0 = Ω
∫ ∞

0
q(z)dz. (4.7)

Here J0 is the energy input rate and q(z) is the dissipation rate per volume.
We now calculate these two quantities in order to obtain the granular tem-
perature T of the particles in the compartment. For the sake of simplicity
we neglect the energy loss resulting from collisions with the wall, i.e., we
treat those collisions as being completely elastic.

4.3.2 Energy input

The energy input comes from collisions of the particles with the bottom. For
simplicity, we assume a sawtooth motion of the bottom, such that colliding
particles always find it moving upwards with velocity vb = 2af . The peak-
to-peak amplitude 2a is taken to be sufficiently small compared to the mean
free path of the particles, so that the bottom is effectively stationary.

Thus, when a particle with downward vertical velocity component vzi

collides with the bottom, it is reflected back with an upward vertical velocity
of |vzi|+2vb. The energy gain per collision is equal to the difference in kinetic
energy before and after collision, i.e.,

∆Ekin = 2mivb(|vzi| + vb) . (4.8)

To obtain the total energy input rate, this expression must be multiplied
by the number of collisions per unit time, which is 1

2ni(0)|vzi|Ω for each
species (with the factor 1

2 representing the fact that half of the particles
have a downward vertical velocity component) and averaged over all pos-
sible vzi. Now, let us assume that the velocity distribution is Maxwellian
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and isotropic. This is an approximation again (both with respect to the
Maxwellian nature [33, 34] as to the isotropy, see Figure 4.7) to keep the
model as simple as possible. It allows us to set 〈v2

zi〉 = 1
3〈v2

i 〉 = kBT/mi

and 〈|vzi|〉 =
√

2kBT/πmi, yielding the following expression for the rate of
energy input:

J0 = Ω
∑
i=1,2

ni(0)

(
vbkBT +

√
2
π

v2
b

√
mikBT

)
. (4.9)

This equation can easily be generalized to two different temperatures Ti

for the species i = 1, 2, but we will not do so here. Since the velocity of
the bottom vb is typically much smaller than the velocity of the particles
(vb � vi), the first term in equation (4.9) is much larger than the second,
which we therefore neglect. The energy input then becomes:

J0 = ΩvbkBT (n1(0) + n2(0))
= gvb (m1N1 + m2N2) , (4.10)

where in the last step we have used equation (4.6).

4.3.3 Energy loss

To evaluate q(z), the dissipation rate per volume, we consider a particle of
mass mi and velocity vi travelling through a bidisperse background. If it
collides with another particle of mass mj and vj the energy loss will be, on
the average (i.e., averaged over the collisional cross-section):

Eloss =
1
4

mimj

mi + mj
(1 − ε2) (vi − vj)

2 , (4.11)

which happens to be precisely half of the energy loss in a frontal collision.
A collision will happen (within a time interval dt) if either of the two

particles finds itself in the cross-sectional volume of the other, which is a
cylinder of length |vi − vj |dt and front area π(ri + rj)2. Hence the collision
rate per volume is the product of the particle densities ni(z)nj(z) and this
cross-sectional volume divided by dt, where we assume that the densities do
not vary significantly over this volume.

The dissipation rate per volume q(z) is found by multiplying the collision
rate per volume with the energy loss (4.11) and averaging over all possible
realizations of the independently distributed velocities vi and vj :

q(z) =
1
8
(1 − ε2) × (4.12)
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2∑
i,j=1

ni(z)nj(z)π(ri + rj)2
mimj

mi + mj

〈
|vi − vj |3

〉
,

where we have multiplied by an additional factor 1
2 to balance the fact that

in this procedure we count every collision twice.
To evaluate the ensemble average 〈|vi − vj |3〉, we note that – under the

assumption of Maxwellian velocity distributions – all of the components of
vi and vj are distributed Gaussian with variances (i.e., squared standard
deviations) σ2

i = kBT/mi and similarly for σ2
j . Again, it is possible to

generalize this to two different temperatures Ti for the species i = 1, 2, but
here we will continue to work with T1 = T2 = T .

It follows that the components of the combined variable uij ≡ (vi −
vj)/

√
2 are also Gaussian, with zero mean and its variances are found by

adding those of the (independently distributed) constituents vi and vj and
dividing by 2: σ2 = kBT/2mi +kBT/2mj . The distribution function P (uij)
thus equals

P (uij) =
1

(2πσ2)3/2
e−u2

ij/2σ2

(4.13)

=
(

mimj

(mi + mj)πkBT

)3/2

exp

{
−mimju

2
ij

(mi + mj)kBT

}
,

where uij = |uij |, and with this we can calculate:

〈|vi − vj |3〉 = 2
√

2 〈|uij |3〉
= 8π

√
2

∫ ∞

0
u5

ijP (uij)duij

=
16√
2π

(
kBT (mi + mj)

mimj

)3/2

. (4.14)

Inserting this expression in equation (4.12) we find:

q(z) =
√

2π(1 − ε2)(kBT )3/2 ×
2∑

i,j=1

ninj (ri + rj)2
(

mi + mj

mimj

)1/2

= 8
√

π(1 − ε2)(kBT )3/2 ×(
n2

1r
2
1√

m1
+

n2
2r

2
2√

m2
+

n1n2(r1 + r2)2

2
√

2
√

m12

)
, (4.15)
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with m12 = m1m2/(m1 + m2) the so-called reduced mass. The energy
dissipation rate Q now follows by integrating q(z) over the whole volume of
the compartment:

Q = Ω
∫

q(z)dz =
√

2π(1 − ε2)(kBT )3/2 × (4.16)

2∑
i,j=1

(ri + rj)2
(

mi + mj

mimj

)1/2 ∫ ∞

0
ni(z)nj(z)dz .

The integral in the above expression is readily evaluated using equations
(4.5) and (4.6): ∫ ∞

0
ni(z)nj(z)dz =

g

Ω2kBT

mimj

mi + mj
NiNj , (4.17)

with which we finally obtain:

Q =
4
√

πg(1 − ε2)
Ω

√
kBT × (4.18)(√

m1r
2
1N

2
1 +

√
m2r

2
2N

2
2 +

√
m12

2
(r1 + r2)2N1N2

)
.

4.3.4 Granular temperature

Equating the two expressions for the rate of energy input (equation (4.10))
and energy loss (equation (4.18)) yields the following expression for the
granular temperature T of the compartment:

kBT =
(2af)2µ

16π(1 − ε2)2
, (4.19)

where the effective mass µ is given by:

µ(N1, N2) = (4.20)⎛⎝ Ω(m1N1 + m2N2)

r2
1

√
m1N2

1 + r2
2

√
m2N2

2 + (r1 + r2)2
√

1
2m12N1N2

⎞⎠2

.

with m12 = m1m2/(m1+m2). It is through this quantity µ that the particle
numbers of the two species enter the temperature. One may check that in
the monodisperse limit (r1 = r2 = r, m1 = m2 = m) it reduces to µψ=1 =
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Ω2m/[r2(N1 + N2)]2 = m{πΩ/total projected area of the particles}2, i.e.,
the particle mass divided by the square of a dimensionless filling factor.

The temperature from equation (4.19) compares well with the temper-
atures T1 and T2 of the large and small particles in the MD simulations of
Figures 4.4-4.6. Indeed, for ψ = 2, 3 one finds the temperature from equa-
tion (4.19) to be in between T1 and T2. It is slightly larger (about 10%)
than the weighted average of T1 and T2, as can be understood from the
idealizations in the model. E.g., the model does not take into account the
dissipation from the particle-wall collisions and assumes a sawtooth driving
instead of the sinusoidal driving used in the simulations.

4.3.5 Flux function

The central quantity of the model is the flux function Fi, defined as the
number of particles (of species i) that leaves the compartment per unit
time. It is the product of half the density 1

2ni(z) (so that we count particles
moving in one direction only) and the average horizontal velocity (which
is equal to

√
2kBT/πmi) integrated over the space above the wall (width

b) from z = h to some cut-off height h + H. Above the cut-off height,
the state variables of the two compartments are in equilibrium and hence
no net flux occurs. In principle, H will depend on the mean free path of
the particles, but here we take it to be constant. The integration is then
straightforward [28]:

Fi(N1, N2) =
1
2

√
2kBT

πmi
b

∫ h+H

h
ni(z)dz

=
√

kBT

2πmi

bNi

Ω
e−migh/kBT

(
1 − e−migH/kBT

)
≈ KNi

√
mi

µ
e−Dmi/µ , i = 1, 2. (4.21)

In the last step we have linearized exp(−migH/kBT ), implying that H �〈
v2
i

〉
/g, and expressed kBT in terms of the particle numbers Ni by means

of equations (4.19)-(4.20). The prefactor K determining the absolute rate
of the flux is given by [29]:

K = 2
√

2(1 − ε2)
gbH

Ω(2af)
, (4.22)

and the dimensionless parameter D, which governs the clustering behavior,
has the form

D = 16π
gh

(2af)2
(1 − ε2)2. (4.23)



4.3. Flux model 83

Figure 4.9: The small-particle flux F2(N1, N2) as a function of N2, for various
numbers of large particles in the compartment: N1 = 0 (dashed), N1 = 120 (thin),
and N1 = 180 (thick). For D = 60 (relatively strong shaking; left plot) the flux
from a compartment with {180 large, 200 small} particles (indicated by the left
dot) is smaller than from a compartment with {120 large, 400 small} particles
(right dot). Hence the clustering is towards the former compartment, i.e. type
I clustering, in agreement with the experimental observation of Figure 4.2. For
D = 200 (weak shaking; right plot) it is the other way around, leading to type
II clustering, again in agreement with experiment. The “tennis ball on basketball
effect” is most pronounced on the left flank of the flux function, where the small-
particle flux from the compartment actually rises (with respect to the dashed curve)
upon adding large particles. Note the different scales of the vertical axis in the two
plots: the stronger the shaking, the higher the particle flux.

The influence of the large particles on the small-particle flux (and vice
versa) is contained in the parameter µ, given by equation (4.20).

In Figure 4.9 we show the small-particle flux F2(N1, N2) as a function
of N2, at D = 60 (relatively strong shaking) and D = 200 (weak shaking)
respectively, for three different values of the number of large particles N1.

For N1 = 0 (no large particles in the compartment, dashed curve) the
flux function has the well-known monodisperse form studied in [8, 9, 30, 31].
It starts out from zero at N2 = 0 (expressing the fact that there is no particle
flux from an empty compartment) and initially increases with growing N2.
For any ordinary molecular gas it would always keep increasing, but for
a granular gas it is seen to reach a maximum and goes down again: The
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inelastic collisions (which become more and more frequent as N2 grows)
make the particles slow, until they are hardly able to jump over the wall
anymore and the flux F2(0, N2) approaches zero in the limit for N2 → ∞.

For N1 = 120 (thin curve) and N1 = 180 (thick curve) the maximum of
the flux function decreases as compared to the situation without large parti-
cles (dashed curve), due to the much larger total mass in the compartment.
However, on the left flank there is a region where the drawn curves are ac-
tually higher than the dashed one. This is an illustration of the “tennis ball
on basketball effect” mentioned earlier, with the small particles becoming
more mobile thanks to the presence of the larger ones.

One can deduce the type of clustering that results from the plots in
Figure 4.9. Let us start, just as in the experiments of Figure 4.2, with
{180 large, 200 small} particles in one compartment (A) and {120 large, 400
small} particles in the other (B). In the left plot, for D = 60, we see that the
flux from compartment A (indicated by the left dot) is smaller than from
compartment B (right dot). Hence the direction of clustering is towards A,
i.e., type I clustering, in agreement with the experimental observation of
Figure 4.2 (see also Figure 4.10). In the plot for D = 200 it is precisely the
other way around, resulting in type II clustering, again in agreement with
experiment. Note also the different scales along the vertical axis in the two
plots: The flux function is considerably smaller for weak shaking, confirming
the fact that the clustering process takes much longer there.

With the above flux function we are now in a position to calculate the
dynamics of our two-compartment system starting from any initial condition
and for any shaking strength. The evolution of the number of particles
NiA in compartment A (i = 1, 2) is given by the net balance between the
(outgoing) flux from A to B and the (incoming) flux from B to A:

dNiA

dt
= −Fi(N1A, N2A) + Fi(N1B, N2B)

= −Fi(N1A, N2A) + Fi(P1 − N1A, P2 − N2A) , (4.24)

where we have used particle conservation, NiA + NiB = Pi. The evolution
of the (complementary) particle numbers in compartment B is governed by
the same equation with A and B interchanged.
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Figure 4.10: Bifurcation diagram comparing the three different regimes 0, I, and
II, as obtained from experiments and the flux model. The same setup and param-
eters as in Figure 4.3 are used and the particle numbers Ni (i = 1, 2) are given
relative to the symmetric solution: Ni− 1

2Pi. The curves represent the steady state
according to the theoretical flux model and the squares and diamonds are exper-
imental data presented in Figure 4.3. The squares correspond to the large beads
and the diamonds to the small ones. Solid symbols refer to compartment A, and
open symbols to B; note that every measurement is thus represented by two points,
which accounts for the mirror-symmetry of the plot in the vertical direction.

4.4 Comparing the flux model, experiment, and
MD simulations

4.4.1 Competitive clustering for size ratio ψ = 2

The predictions from the flux model, calculated from equations (4.21)-(4.24),
are found to be in good quantitative agreement with our experimental re-
sults which were shown in Figure 4.3. In Figure 4.10 we compare model
predictions and experimental data for a mixture of P1 = 300 large and
P2 = 600 small steel beads, with size ratio ψ = 2, starting always from the
same initial situation:

{N1A(0), N2A(0)} = {180, 200} in compartment A,

{N1B(0), N2B(0)} = {120, 400} in compartment B. (4.25)
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Both in the model and in experiment we recover the three different
regimes observed in the Introduction: For vigorous shaking (regime O,
D < 10) the system quickly settles into a symmetric state with equal
amounts of small and large particles in both compartments. At moderate
shaking (regime I, 10 < D < 140) the clustering takes place in compartment
A, the one initially containing the majority of large particles. This regime
has been indicated by a light gray shading in Figure 4.10 and in all figures
that follow. At even milder shaking (regime II, D > 140) the clustering
takes place in compartment B; for this regime we use a darker shading.

The time scale of the clustering grows with increasing D. This is illus-
trated in Figure 4.11, where the evolving particle numbers NiA(t) and NiB(t)
(evaluated by the flux model) are given at D = 100 and 200, respectively.
In the first case the clustering is complete already after 150 s, whereas in
the latter case it takes almost a hundred times as long. In agreement with
our experimental observations the small particles cluster first and only when
nearly all of them have reached their final destination do the large ones fol-
low. The clustering times obtained from the flux model are in reasonable
agreement with the experimental observations, including a sudden jump in
the time scale at the transition from type-I to type-II clustering: Just be-
fore the transition the clustering (into box A) is experimentally found to be
about 10 times as fast as just after the transition (into box B). This jump
is also found in the time scales evaluated from the flux model.

In order to see what causes the transition from regime I to II, we make
flow diagrams (see Figure 4.12) that show how the particle numbers N1B(t)
and N2B(t) in compartment B evolve for any initial condition. The arrows
indicate the dynamics of the system and the cross denotes the initial condi-
tion that was used in the experiments (specified in equation (4.25)).

For very strong shaking (Figure 4.12a, D = 1) only one fixed point exists:
the stable uniform distribution {150, 300} in the center of the flow diagram.
The system quickly approaches this point regardless of the initial condition.

At D = 20, just beyond the pitchfork bifurcation, the homogeneous state
has become unstable and has given way to two new stable fixed points. These
correspond to compartment B being either comparatively empty (fixed point
in the lower part of the flow diagram, type I clustering) or well filled (upper
part, type II). The basins of attraction for these two points are indicated
by the shading: Any initial condition in the light gray region will lead to
a cluster in box A, while initial conditions lying in the dark region lead to
a cluster in box B. The initial condition for the experiments of Figure 4.10
(indicated by the cross) lies in the light gray basin, so this one leads to a
cluster in compartment A. The arrows indicate that first the small particles
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Figure 4.11: Evolution of the system calculated from the flux model, starting from
the initial condition equation (4.25), for (a) D = 100 (type-I clustering) and (b)
D = 200 (type-II clustering). The solid curves represent the number of particles in
compartment A, the dashed ones compartment B. It is seen that the small particles
(lower row) cluster first, followed by the large ones (top row). Note the different
time scales between type-I and type-II clustering.

settle into their preferred distribution over the compartments and that the
large ones follow later (as we also noted in the plots of Figure 4.11). At
this relatively small value of D the small beads are still divided over the
two compartments, but the large beads already cluster heavily: This is in
agreement with the bifurcation diagram of Figure 4.10.

For D = 80 the clustering has become much more pronounced, since also
the small beads accumulate into the same compartment. We furthermore
note that the boundary between the two basins of attraction has shifted and
is now almost horizontal.

At very mild shaking (D = 200), the boundary between the two basins
of attraction has shifted again. The initial condition (the cross) now lies
within the dark basin of attraction and we end up with nearly all particles in
compartment B. The same plot shows that the fixed points move further into
their corners for increasing D, i.e., the clustering becomes more pronounced
for decreasing shaking strength. This feature was apparent already in Figure
4.2, and has been observed earlier also for clustering in a monodisperse gas,
i.e., for ψ = 1 [8, 9].

Interestingly the boundary between the two basins of attraction is found
to move (as function of D) in a non-monotonic fashion. From D = 20 to
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Figure 4.12: Flow diagrams calculated from the flux model (for the same system
as in Figures 4.10 and 4.11) showing how the contents of compartment B evolve at
five successive values of the shaking parameter: (a) D =1, (b) D =20, (c) D =80,
(d) D =200, and (e) D =250. The cross indicates the initial condition used in
the experiments: {N1B(0), N2B(0)}={120, 400}. At D=1 there is no clustering
and all initial conditions lead to the uniform distribution (the central point in the
flow diagram). For D = 20, .., 250 all initial conditions in the light gray basin of
attraction lead to a comparatively empty compartment B (type-I clustering) and
those in the dark basin of attraction lead to a well-filled compartment B (type-II
clustering). Note that the slope of the boundary between the two regimes shows
non-monotonic behavior as function of D. Figure (f) shows the region of competitive
clustering (gray): The boundary between the two basins of attraction in Figures
(a)-(e) sweeps through this region and therefore the initial conditions here lead to
either type-I or type-II clustering depending on the value of D.

D = 80 it is seen to straighten out towards an almost horizontal position,
but from D = 80 onwards it starts to slant again and at the same time
develops a curve. At some point between D = 200 and D = 250 it goes
through the diagonal position and eventually seems to come to a standstill.
We shall not pursue the limit for very high values of D, however, since
here the shaking becomes so weak that no particles are able to jump over
the wall anymore: Any clustering predictions in this limit will no longer be
reproducible in experiments or MD simulations.

The motion of the basin boundary shows that competitive clustering
does not occur for all initial situations: Only a set of conditions in the lower
right quadrant and (equivalently) the upper left quadrant can be directed
into either compartment by tuning the shaking strength. On the other hand,
there is also a region through which the boundary sweeps twice, so here we
find two consecutive transitions between the clustering regimes I and II as
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D is varied. The initial condition used in the experiment lies just outside
this double transition region; had it been chosen slightly differently, the
bifurcation diagram of Figure 4.10 would have had an additional band of
type-II clustering between regimes O and I. The twist in the small-particle
curve immediately after the pitchfork bifurcation at D=20 is a “ghost” of
this band.

4.5 Exploring the parameter space: Dependence
on size ratio (ψ) and relative abundance of
large and small particles (σ)

4.5.1 Size ratio ψ

How do the above observations generalize to size ratios ψ = r1/r2 different
from 2 ? This ratio has a marked effect on the critical D values where the
transition from the regimes O, I, and II take place. In Figures 4.13 and
4.14 we show the position of these regimes as a function of ψ and D, for
the same initial condition that was specified in equation (4.25). The drawn
curves have been calculated from the flux model and the symbols are data
from experiments (Figure 4.13) and MD simulations (Figure 4.14). The
vertical dashed line in Figure 4.13 corresponds to the case ψ = 2 studied in
the previous subsection.

It is seen that for ψ < 1.5 the transition from regime O to regime II
is immediate: here the larger beads are not sufficiently big to compensate
for the fact that they are a minority. It is the larger number of beads that
decides where the cluster goes, just as for the mono-disperse case (ψ = 1).
On the other hand, for high values of ψ, the dominant size of the large beads
always makes them the decisive factor (only regime I survives). It is precisely
the intermediate region 1.5 < ψ � 2.3 in which the competition takes place:
The curving border between regimes I and II indicates the critical value of
D where the basin boundary sweeps through our initial condition (4.25).
For ψ ≈ 1.6 the boundary sweeps twice through this initial condition and
we witness the particularly interesting sequence 0-II-I-II, both in the model
and in experiment.

Both in experiment (Figure 4.13) and in the MD simulations (Figure
4.14) the actual border between regimes I and II is found to lie more to the
right than predicted by the flux model. This shift of the borderline means
that the “counterintuitive” type-II clustering is even stronger than predicted
by the flux model. This may be understood from the fact that the mobility
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Figure 4.13: Phase diagram showing the three clustering regimes as a function of
the inverse shaking strength D and the size ratio ψ = r1/r2. The drawn curves
are calculated from the flux model and the symbols correspond to experiments: ◦ :
no clustering, × : type-I clustering, and � : type-II clustering. The experimental
results on the vertical dashed line ψ = 2 corresponds to the results illustrated in
Figure 4.10. The initial condition is always taken to be as in equation (4.25).

of the large beads is underestimated by the flux model, which assumes the
granular temperatures for the large and the small beads to be equal. In
reality (in experiments and MD simulations) the temperature of the large
ones is known to be higher and therefore the type-II scenario in which the
majority of large beads switches compartment occurs somewhat easier than
suggested by the flux model.

4.5.2 Relative abundance σ

In the experiments and simulations so far we have always used mixtures
in which the number of large particles was half the number of small ones:
σ = P1/P2 = 1/2. Let us now have a brief look at other compositions,
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Figure 4.14: The same phase diagram as in Figure 4.13, for the same initial
situation (4.25), but this time the symbols represent MD simulations. Between the
regimes of type-I and type-II clustering there is also a zone where the clustering in
the MD simulations can go either way depending on statistical fluctuations. This
undecided state of affairs is indicated by the open squares, � : Each of them is
based on 10 repetitions of the MD simulation, of which typically half ended in
type-I clustering and the other half in type-II. As in all previous figures the ratio
of large to small particles is σ = P1/P2 = 300/600 = 1/2.

since obviously this parameter σ must have an important influence on the
clustering behavior: A larger value of σ means that the large beads become
a more important minority (or even a majority for σ > 1) and hence type-I
clustering will gain ground. This is indeed the case as illustrated by Figure
4.15 for σ = 1/6 and 1. The initial condition we use here ({3

5P1,
1
3P2} in

compartment A and {2
5P1,

2
3P2} in compartment B) is equivalent to the one

taken in all previous experiments and simulations (equation (4.25)), but
due to the change in P1 and P2, the absolute number of particles initially
inserted into the two compartments are different.

The position of all the lines (i.e., transitions) in the phase diagram are
affected by the changing particle numbers. Take e.g. the value of D at
which the transition from regime O to II occurs in the monodisperse limit



92 Chapter 4. Competitive clustering

(a)

1 1.5 2 2.5 3
0

100

200

II

I

D

O

(b)

1 1.5 2 2.5 3
0

100

200
II

I
D

O

Figure 4.15: The same as Figure 4.14, but now for (a) σ = P1/P2 = 200/1200 =
1/6 and (b) σ = 600/600 = 1. For growing σ (relative abundance of the large
particles) type-I clustering clearly gains ground. The initial condition used here
is {3

5P1,
1
3P2} in compartment A and (hence) { 2

5P1,
2
3P2} in compartment B, in

analogy with the condition (4.25) which was taken in all previous figures (where
σ = 300/600 = 1/2).
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ψ = 1. This clearly goes down as the total number of particles in the system
increases: In Figure 4.14 (with P1 + P2 = 900) the critical D-value exceeds
40, while in Figure 4.15a (with P1+P2 = 1400) it lies below 20. The physical
reason for this is that the larger number of particles induces more collisions
and hence the dissipation rate increases, so stronger shaking is necessary to
obtain the homogeneous distribution. According to the monodisperse flux
model [8, 9, 30] the critical D-value for ψ = 1 goes as

Dc,ψ=1 ∝ 1
(P1 + P2)

2 . (4.26)

That is, the product of Dc,ψ=1 and (P1+P2)2 is exactly the same in all three
plots of Figures 4.14 and 4.15a,b.

The border between the two clustered states (regime I and II) is affected
even more drastically. Particularly the band of ψ values where both cluster-
ing types can be obtained by adjusting the shaking strength (competitive
clustering) depends strongly on σ. For σ = 1 it is confined to the narrow
band of values 1.2 < ψ < 1.5. Here regime I dominates the phase diagram
and the borderline between type-I and type-II clustering is pushed towards
the vertical axis at ψ = 1.

For decreasing σ the same borderline moves towards the right and bends
down, thereby reducing regime I and broadening the band of competitive
clustering. Indeed, in Figure 4.15a for σ = 1/6, there is only one point
(indicated by the cross) which consistently gave type-I clustering in our MD
simulations. It is surrounded by a number of points for which the cluster-
ing was undecided, sometimes going in one direction and sometimes in the
other; this is a manifestation of statistical fluctuations, which are not taken
into account in our mean field approach [32]. Not surprisingly, given the
relatively large values of ψ in this region (and the associated deterioration
of the one-temperature assumption, see Figure 4.8) the simulations do not
precisely follow the predictions of the flux model here. Nevertheless, the
general trend of the phase diagram is still well reproduced.

4.6 Conclusion

The main conclusion of this work is that experiment, theory, and numerics all
agree on the phenomenon of competitive clustering in a bidisperse granular
gas: The clustering can be directed either towards the compartment initially
containing the majority of large particles (type-I clustering) or to the one
containing mainly small particles (type-II) simply by adjusting the shaking
strength.
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The best quantitative agreement with the theoretical flux model is found
when the size ratio between the large and small particles (ψ) is not too
much larger than 1. This can be traced back to the fact that in the model
the granular temperatures T1 and T2 are assumed to be equal, which is an
accurate assumption only for ψ close to 1. Since the region of competitive
clustering is found to move closer and closer towards ψ = 1 if we let the
number of large particles grow (see Figure 4.15), this means that the theory
works best for comparatively large numbers of large particles.

For smaller large-particle numbers the region of competitive clustering
in the phase diagram is pushed towards higher ψ values. The theoretical de-
scription here becomes less accurate, but still shows the correct qualitative
features. Our MD simulations show that in these regions the borderline be-
tween type-I and type-II clustering widens to a broad zone where the cluster
can go in either direction.
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Chapter 5

Granular eruptions: void
collapse and jet formation §

Abstract

Dropping a steel ball onto a bed of loose, very find sand creates an upward jet,
which exceeds the release height of the ball. The jet is created as the crater formed
by the impact collapses due to the sand pressure. For high impact velocities the
void collapse is seen to entrain air beneath the surface. This air bubble slowly rises
to the surface where it causes a granular eruption. These experimental observations
are accounted for within a simple Rayleigh-type model.

5.1 Introduction

It has been known for a long time that jets can be created when a ball or
fluid droplet impacts on a fluid surface [1–5]. Thoroddsen and Shen found
related jets when a solid sphere impacts on a deep layer of monodisperse
glass beads [6]. When we performed similar experiments on fine sand, we
found it hard to achieve quantitatively reproducible results, presumably due
to the sensitivity of the experiment to the initial packing density. In order
to prepare a well-defined initial state, we have therefore decompactified and
homogenized extremely fine sand by blowing air through it via a perforated

§See also: R. Mikkelsen, M. Versluis, E. Koene, G.-W. Bruggert, D. van der Meer,
K. van der Weele, and D. Lohse, Granular Eruptions: Void Collapse and Jet Formation,
Phys. Fluids 14, S14 (2002), and D. Lohse, R. Bergman, R. Mikkelsen, C. Zeilstra, D.
van der Meer, M. Versluis, K. van der Weele, M. van der Hoef, and H. Kuipers, Inpact on
Soft Sand: Void Collapse and Jet Formation, Phys. Rev. Lett. 93 198003 (2004).
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bottom plate. In such loose packings, the yield strength is much smaller
than in dense packings and we found that the jet formation is strongly en-
hanced here and reproduces well. In addition, a novel “granular eruption”
is observed for deep impacts. To observe the jet formation in more detail,
we have also performed experiments in a quasi two dimensional geometry,
and finally we describe a simple Rayleigh-type model that numerically re-
produces the experimentally observed jet formation qualitatively.

5.2 Experimental observations

As stated in the introduction, we have studied the effect of impact in both a
three dimensional and a quasi two-dimensional setup; we will concentrate on
the former first. This setup consist of a container with dimensions 15×15×50
cm, which has two transparent side walls such that the impact and the
jet can be studied. This container is filled with a 25-40 cm thick layer of
non-spherical sand grains with sizes ranging from 10µm to 100µm (average
grain size ≈ 40µm. The bottom of the container consists of a porous plate,
enabling air to flow through the sand. Air pumped through the sand layer
leads to the fluidization of the bed and by turning this flow off slowly the sand
layer is left to settle down gently. This procedure results in the generation
of a very homogeneous, extremely loose layer of sand. The experiment
then consists of dropping a steel ball of radius R0=1.25 cm into the sand
bed from various heights and recording the resulting dynamics with a high
speed camera (up to 2000 frames per second).

In this setup we found, for release heights that are not too large, a
qualitatively similar phenomenology to the jets observed by Thoroddsen
and Shen [6], but when the dropping height, and hence the impact velocity,
is above a certain value, interesting new behavior is found. This is illustrated
in Figure 5.1, which shows key features of the jet formation for large impact
velocity. First the ball impacts, vanishes into the sand, and a crown-like
splash is created (Figure 5.1a-d). Inhomogeneities develop in the crown of
the splash due to the inelastic particle-particle collisions. A crater is formed
and after a while a jet shoots out of the sand at the position of impact (Figure
5.1e-h). While the upper part of the jet is still shooting up, in the lower parts
the inelastic particle-particle collisions lead to density inhomogeneities in the
jet (similar to what is found for the splash). These inhomogeneities resemble
those of the surface tension driven Rayleigh-instablity of a liquid jet, even
though there is no surface tension in granular matter. The formation of the
splash and jet have also been observed by Thoroddsen and Shen, although
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(a) t=-7ms (b) t=5ms (c) t=33ms

(d) t=88ms (e) t=108ms (f) t=148ms

(g) t=233ms (h) t=358ms (i) t=452ms

(j) t=503ms (k) t=583ms (l) t=833ms

Figure 5.1: Jet formation after impact (v0=2.43m/s) of a steel ball of R0=1.25cm
on loose, very fine sand. The jet in this experiment exceeds the release height of
the ball. Frames (b)-(d): splash; frames (e)-(f): a jet emerges; frames (g)-(h):
clustering within the jet; frames (i)-(k): granular eruption at the surface; frame (l):
smooth surface after events.
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Figure 5.2: Maximum height the jet reaches for different release heights. The
maximum always exceeds the release height represented by the dashed line, except
possibly for release heights above 300mm. Here the ball penetrates so deep into the
sand that it hits the bottom, resulting in the saturation of the maximum height.
Notice that dropping the ball right at the sand surface (release height zero) results
in a 10cm high jet.

(a) (b) (c)

Figure 5.3: Cylinder impacting on a slit of sand between two transparent plates,
resembling a quasi-2D version of the impact experiment. This makes it possible to
track the void contours during impact and collapse.

it should be noted that in all our experiments the jet height exceeds the
release height of the ball (see Figure 5.2), whereas the jets of Thoroddsen
and Shen never reach the release height [6]. This is, presumably, because in
their experiments the sand is less fine and more compact.

The novel phenomenon here is the eruption found for high impact ve-
locities, after the jet has reached its maximum height and is on its way
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down (Figure 5.1i-k). The variation of the strength of this eruption on ball
size, release height and on the density of the sand layer indicates that this
eruption is related to the void collapse for deep impacts. As we will make
plausible below, if this void collapses above the ball it entraines air below.
This entrained air bubble then slowly rises to the surface and causes the
granular eruption when it reaches the surface, resembling a boiling liquid –
or even a volcano.

To understand in more detail how the jet and eruption form, and what
leads to the qualitative difference between small and large impact velocities,
we need to find out what is going on below the surface of the sand. We there-
fore performed a series of similar experiments in a quasi two-dimensional
setup, replacing the ball by a cylinder and dropping it into a container with
a quasi-2D cross section of 50cm × 1.5cm, filled with loosely packed sand.
The side plates are transparant and we let the cylinder drop with its axis
parallel to the surface and orthogonal to these side plates. The same sand
is used as in the 3D setup and also here air is blown through the sand in
order to generate a homogeneous, loose sand bed. An example of impact in
this setup is shown in Figure 5.3, which verifies the two-dimensional nature
of the jet formation. The impact formes a splash above the initial height of
the layer and a void below (Figure 5.3a). The void collapses as the walls
are pushed inwards by the sand pressure (Figure 5.3b), which focusses into
a single upward jet (Figure 5.3c) now taking the form of a sheet, but with
a much smaller maximum height. This is due to the fact that in 3D the ap-
proximately cylindrical void collapses radially inward, while in 2D the void
collapse is less focused due to the flatness of the contours.

In Figure 5.4 and Figure 5.5 two side views are shown for low and high
impact velocity, respectively. In both cases, the formation of a splash and
jet, similar to the 3D case, can be observed. But an important difference
between these two cases is how the void collapses. For low impact velocities
the void collapses from the bottom and up (Figure 5.4d-g). In contrast, a
high impact velocity causes the cylinder to propagate so deep, that the void
collapses before the cylinder comes to a stand still, entraining air (Figure
5.5g-h). Notice that in this case two jets are formed: one upwards (the one
visible above the surface) and one downwards into the entrained air bubble
(Figure 5.5i-j). The bubble slowly rises, leading to a granular eruption at
the surface (not shown).
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(a) t=-10ms (b) t=10ms (c) t=42ms

(d) t=77ms (e) t=96ms (f) t=108ms

(g) t=123ms (h) t=151ms (i) t=208ms

Figure 5.4: The formation and collapse of a void for low impact velocity (v = 1.72
m/s) in the 2D setup. Frames (b)-(d): the impact creates a splash above the surface
and a void below; frames (e)-(h): the void collapses from the bottom and up and a
jet is formed; frame (i): the jet reaches its maximum height.
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(a) t=-21ms (b) t=10ms (c) t=37ms

(d) t=66ms (e) t=78ms (f) t=100ms

(g) t=108ms (h) t=116ms (i) t=150ms

(j) t=166ms (k) t=191ms (l) t=236ms

Figure 5.5: Air entrainment as seen in experiment using the 2D setup for a high
impact velocity (v = 2.43 m/s). Frames (b)-(e): impact creates splash above surface
and void below; frames (f)-(h): the void collapses entraining air; frames (i)-(k): the
upward and downward jets are formed: frame (l): the bubble rises.
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Figure 5.6: Sketch of the void collapse. When the accelerated sand grains from
the sidewalls of the cylindrical cavity collide on the axis of the cavity, two jets are
formed: One downward into the entrained air bubble formed above the sphere, and
one upward straight into the air.

5.3 Rayleigh type model

To work out the essentials of the void collapse, we now construct a “minimal”
continuum mechanical model. First, the delay curve z(t) of the ball in the
sand can be obtained from a simple force balance model involving drag,
gravity, and added mass. It describes the experimental results obtained for
a falling ball equipped with a thin tail rod, which allows for easy depth
measurements [9]. The delay curve z(t) of the ball is inverted to obtain
tpass(z), the time when the ball passes the layer of sand at depth z. This sets
the initial conditions for the collapse of the two-dimensional void, namely
R(z, tpass) = R0 and Ṙ(z, tpass) = 0. Here R(z, t) is the time and depth
dependent radius of the void, see figure 5.3.

Assuming that the sphere penetrates the sand under the influence of a
constant deceleration af , and hits the surface with an impact velocity v0, it
comes to a stand still after t = v0/af . The impact velocity as a function of
the dropping height hr, is found from energy conservation to be

v0 =
√

2ghr . (5.1)
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The maximum depth the sphere reaches is

dmax =
1
2
v2
0/af , (5.2)

and the trajectory of the sphere is

z(t) = v0t − 1
2
af t2 . (5.3)

Inverting this expression yields the time tpass(z) when the sphere passes the
layer at depth z,

tpass(z) =
v0 −

√
v2
0 − 2afz

af
. (5.4)

Next, the collapse of the void formed by the ball has to be described. It
is driven by the (“hydrostatic”) sand pressure p(z) at depth z. For small z
the pressure simply is p(z) = ρsgz, for larger z it saturates [10]. Here, ρs is
the sand density, assumed to be constant.

We consider the implosion of a cylindrical cavity in a surrounding in-
compressible and inviscid fluid initially at rest at pressure p(z). The Euler
equation in cylindrical coordinates takes the form

∂v

∂t
+

∂

∂r

(
1
2
v2 +

p

ρs

)
= 0 . (5.5)

Inserting the continuity equation rv = F (t) ⇔ v = F (t)/r into equation
(5.5) gives

˙F (t)
r

+
∂

∂r

(
1
2
v2 +

p

ρs

)
= 0 . (5.6)

By assuming that R∞ is a far away point, such that v(R∞, t) = 0 and
p(R∞, t) = p(z) at all times, we are able to integrate equation (5.6) from
R∞ to R(t), ∫ R

R∞

˙F (t)
r

dr +
∫ R

R∞

∂

∂r

(
1
2
v2 +

p

ρs

)
dr = 0 , (5.7)

which gives the equation

Ḟ (t)ln
R

R∞
+

1
2
V 2 − p(z)

ρs
= 0 . (5.8)

Here we have used that p(R, t) = 0, v(R∞, t) = 0 and p(R∞, t) = p(z).
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The continuity equation should also be valid on the cavity border, such
that F (t) = R(t)V (t). Writing V (t) = Ṙ(t), we find a Rayleigh-type ordi-
nary differential equation for an imploding cylindrical cavity in an inviscid,
incompressible fluid at pressure p(z) = ρsgz,

(RR̈ + Ṙ2)ln
R

R∞
+

1
2
Ṙ2 =

p(z)
ρs

= gz . (5.9)

The Rayleigh type model is applied to the collapsing void problem by
solving equation (5.9). The sand is discretized into N individual layers
which become active as soon as the sphere has passed and the equation
for the collapsing void (5.9) is solved for each active layer. Since the sand
pressure is assumed to increase linearly with depth, the acceleration with
which the cavity begins to collapse also increases with depth. This increase
in pressure and the fact that the cavity begins to collapse as soon as the
sphere has passed, makes air entrainment possible. Solving the ordinary
differential equation (5.9) is numerically relatively straightforward and the
dynamics following from these simulations is shown in Figure 5.7, resembling
the void collapse in the 2D experiments for high impact velocity shown in
Figure 5.5. Just as in the experiment shown in Figure 5.4, the void described
by this model collapses from the bottom and up for low impact velocities
(not shown).

5.4 Conclusion

When a solid sphere impacts on a loosely packed bed of sand, a splash is
formed above the surface and a jet is seen to rise straight up into the air.
The jet is created as the crater formed by the impact collapses due to the
sand pressure. For a sufficiently high impact velocity we find that air is
entrained beneath the surface. This entrained air bubble then slowly rises
to the surface where it causes a granular eruption. We have described the
void collapse by a simple Rayleigh-type model, and found good agreement
with experimental findings.
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Figure 5.7: Cross-section of the 3D-void collapse following from the Rayleigh-type
model, for the same impact velocity and ball radius as in figure 5.1. The void is
pressed together by the “hydrostatic” pressure from the side, leading to a singularity
and an upward and downward jet.
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Chapter 6

Granular flows in Couette
cells: wall localized
shearbands

Abstract

An experimental study of granular shear flows in Couette-like rheometers is pre-
sented. For sufficiently deep layers of grains, the system exhibits a narrow shear
band which is localized at the inner wall and is independent of the bottom topogra-
phy. For a wide variety of particle shapes and polydispersities we have found that
the velocity profiles of these shear bands tend to decay exponentially away from the
inner cylinder. This decay rate does not only depend on the size of the particles,
but also on the radius of curvature.

6.1 Introduction

When external stresses are applied to a granular material, the resulting flow
is different from that of an ordinary fluid. Instead of deforming uniformly,
narrow shear bands are formed where the material flows and yields, while
the rest of the material remains solid-like and barely deforms. Shear bands
dominate the flow, represent areas of material failure and energy dissipation,
and are important for the understanding of many industrial and geophysical
processes. The narrow width of typical shear bands (5-10 grain diameters)
forms a major obstacle for continuum theories for granular flows.

For slow granular flows this behavior is typically described by Mohr-
Coulomb models, which are based on an analogy with the classical descrip-
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tion of friction between two solid bodies. For ordinary friction, an object
on a frictional surface remains at rest until the tangential force exceeds the
product of the static friction coefficient and the normal force. When the
object is made to slide, the ratio between tangential and normal force is
given by the dynamic friction coefficient. This dynamic friction coefficient
is usually smaller than the static one, leading to hysteresis, and is only a
weak function of the shearing velocity.

In the granular context one considers the materials as continuous (i.e.
ignores the small grain-scale structure) and assumes that the frictional laws
should hold for any imaginary plane in the material. Instead of normal and
tangential forces one then considers the normal and tangential stresses along
these planes. When applying an overall shear stress to the granulate, one
thus searches for planes where the ratio of shear and normal stress is max-
imal; when they exceed the static friction coefficient, yielding along these
planes takes place. Since the necessary shear stress to sustain shear flow
along such a slip plane is below the static threshold, this model immediately
leads to (infinitely) narrow shear bands. In addition, the constant dynamic
friction coefficient leads to rate independence, i.e., neither the morphology
of the shear bands nor the overall applied stress does depend on the shear
rate. But this theory does not predict any of the details of the shear bands
(their width, precise functional form of the velocity field etc).

To study the behavior of sheared granular matter experimentally, Cou-
ette cells are often used. A Couette cell is a rheometer formed by two coaxial
cylinders rotating with respect to each other. In rheology such devices are
used to determine (effective) viscosities, yield strengths and aging for a wide
range of complex fluids such as foams, mayonnaise and gels. Their circular
geometry allows for continuous, long time studies of the material, which is
the main advantage, but also leads to a radially inhomogeneous stress field
and curvature effects. These two features will be important for granulates.

By filling such a setup with a granular material, a stable flow field can
quickly be established where a shear band is formed around the rotating
inner cylinder. The shear stresses are largest near the inner cylinder, and
following the Mohr-Coulomb picture sketched above, this is where one would
indeed expect a narrow shear band. For a wide range of different grains
experiments have verified that the velocity profiles are rate independent [1,
2], in agreement with the Mohr-Coulomb models. It therefore is convenient
to define a non-dimensional flow rate, ω(r), which is the ratio between the
average azimuthal velocity at r and the rotation rate of the inner cylinder
Ω. The velocity profile ω(r) is a rapidly decaying function when r moves
away from the inner cylinder. It is generally agreed that the “width” of
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the shearband is very narrow and set by the grain scale; the function form
of ω is not agreed upon [1–5]. Over the past few years, it has become
clear that ω(r) does not really become zero anywhere in the material; even
though a superficial inspection suggest the existence of a large, completely
stationary part of the system, in fact these areas also exhibit flow, albeit
very slowly [2–5].

Mueth et al. [2] determined the Couette flow for two different granular
media, one consisting of (nearly) mono-disperse, smooth, spherical particles,
and one for kidney-shaped particles. In their experiments the velocity pro-
files were found to be roughly exponential for the mono-disperse, spherical
particles and Gaussian for the non-spherical ones. These results support the
argument that the overall shape of the velocity profile arises from two main
contributions: an exponential “slip” contribution in the presence of layer-
ing and a diffusive-like contribution associated with disorder. In general, a
combination of these effects can be expected, and so one may attempt to fit
the data with a combination of an exponential and Gaussian:

ω(r) = ω0 exp

(
−b

r

dp
− c

(
r

dp
− r0

dp

)2
)

. (6.1)

Here dp denotes the grain size, which is a natural length scale in this problem.
Indeed, with this scaling, b was found by Mueth et al. to be of order one [2].
The Gaussian term has two fit parameters, c and r0; the last one is hard
to get from real data when the Gaussian term is small. The distinction
between the velocity profiles of the spherical and non-spherical particles is
essentially given by the ratio of b and c. Mueth et al. found for spherical
particles {b, c, r0/dp} = {0.36 ± 0.13, 0.06 ± 0.03, 0.6 ± 0.8}, while for
the kidney shaped particles {b, c, r0/dp} = {0, 0.11 ± 0.02, − 0.1 ± 0.5}.
Other experiments have found similar exponential profiles for nearly mono-
disperse, spherical granular media, except for the first couple of grains right
next to the inner cylinder where the velocity is found to decrease slower [1].

To gain information about the full 3D flow field is a complex task. Differ-
ent approaches have been taken, such as submerging the grains in an index
matched fluorescent fluid and using a lasersheet to scan through the mate-
rial [6], as well as X-ray and magnetic resonance imaging (MRI) [2]. The
results showed that the velocity profile near the fixed surface at the bottom,
at the free surface at the top, and in the interior are the same to within
the resolution of these measurements. Thus one only needs to determine
the flow at the top surface in order to characterize the flow, a much simpler
task than determining the full flow field. This is only true for the simple
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Couette flows and not for the more complex split-bottomed Couette flows
we will encounter below.

Experiments using Couette cells have revealed many characteristic gran-
ular phenomena. For example, in a binary mixture of spherical glass par-
ticles size segregation takes place, where the larger particles rise to the top
of the mixture and stay there as rotation continues [7]. At the same time
the smaller particles, which in these experiments outnumber the larger ones,
were found to undergo a convection-like motion where they sink downwards
while in contact with or very close to the inner cylinder, but rise upwards
when not in its vicinity. This flow pattern resembles that of convection in
fluids. It also connects nicely to the Brazil nut effect in a vibro-fluidized
granular medium, where large particles surrounded by smaller ones rise to
the top of the mixture. The convective motion of the small particles, which
rise in the bulk of the medium and sink near the walls of the container, has
been argued to be responsible for this phenomenon.

6.1.1 Universal shear zones

To study shear bands without the influence of the lateral boundaries, a
simple modification of the Couette cell has been introduced [4, 5]. Splitting
the bottom support at r = Rs in two, such that the inner part rotates
with the inner cylinder while the outer part remains stationary together
with the outer wall (see Figure 6.1), creates a shear zone which propagates
up from the discontinuity at Rs, towards the free surface of the material.
The resulting flow rapidly reaches a steady state in which it can be kept
indefinitely, allowing for accurate observations of the flow field. The radial
component of the average surface flow is found to be negligible and the
average flow is thus in good approximation azimuthal.

The main observation is that for intermediate filling levels H, where the
shear band is not in contact with any of the boundaries, the velocity profiles
ω(r) follow an error-function type master curve:

ω(r) =
1
2

+
1
2
erf

(
r − Rc

W

)
. (6.2)

This has been verified for a wide range of granular materials and experimen-
tal parameters Rs (slip radius) and H (filling height) [5]. The regime where
ω(r) follows equation (6.2) is denoted the universal regime: by renormaliz-
ing the position according to λ = (r−Rc)/W , all measured velocity profiles
collapse onto a single curve. Experiments have shown that these profiles are
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rate independent, just as in the Couette geometry, and in agreement with
Mohr-Coulomb models.

In the universal regime all the information on the velocity profiles at
the surface can be condensed in the variation of the center position of the
shear zone Rc and its width W with the filling height H and location of
the split Rs. Rc was found to be independent of the type and size of grains
used, so the only relevant length scales determining Rc appear to be H and
Rs. As the filling height H is increased, the position of the shear zone at
the free surface Rc(H) moves towards the center of the shear cell. The
dimensionless displacement of the shear zone, (Rs −Rc)/Rs, is a function of
the dimensionless height H/Rs only. The following relation,

Rs − Rc

Rs
=

(
H

Rs

)5/2

, (6.3)

has been found to give excellent agreement with experimental findings for
different granular media [5]. The width W was found to be independent of
Rs, and grows with H and particle diameter [5].

The results from the ordinary and split-bottomed Couette cells clearly
illustrate the paramount importance of the lateral boundaries. Summarizing
the main results, in a Couette cell the shear band is located at the inner
cylinder, the velocity profile is independent of height, and its functional form
may depend on particle shape. For the split-bottomed geometry both the
width and the localization of the shear band vary with the filling height H.
Increasing H makes the shear band wider while its center position moves
closer to the inner cylinder and at a certain filling height, Hc, the shear band
reaches the inner cylinder.

In the experiments we will study in detail the wall-localized shear bands.
We will first show how the velocity profiles in the split-bottomed geometry
evolve towards a narrow wall-localized shear band for filling heights H > Hc.
We will show that, for large heights, velocity profiles in both Couette and
split-bottomed cells become height-independent and equal. We will also find
that, away from the inner cylinder, these profiles exhibit an almost purely
exponential decay independent of particle properties; this is in apparent
contrast to the findings in [2]. Finally we will study the spatial decay rate
of these profiles, and find to our great surprise that this decay rate does not
simply scale with particle size only, but that the value of radius of curvature
plays a crucial role.
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6.2 Experimental setup

Ω

t=0 t=0.6s t=1.5s

Figure 6.1: Drawing of the experimental setup illustrating the split-bottomed
geometry: the dark area of the bottom remains stationary while the bright area
of the bottom rotates together with the inner cylinder. The three pictures in the
lower row shows the surface flow for 1 mm glass particles filled at H = 10 mm.
A black line of tracer particles is added to the surface layer, illustrating the bulk
localization of the shear zone.

Our experimental setup is constructed of an outer and inner cylinder with
radii Rout and Rin respectively, and a stationary bottom plate. In all our
experiments the radius of the outer cylinder is Rout = 110 mm, while we have
a choice of three different inner cylinders with radii Rin = 2.5 mm, 20 mm,
and 40 mm. A disk of radius Rs can be attached under the inner cylinder,
which then covers the annular area π(R2

s − R2
in) of the bottom surface. By

fixing the disk to the inner cylinder such that the two rotate together, we
obtain the split-bottomed geometry as sketched in Figure 6.1(top). If no
disk is attached under the inner cylinder, one obtains the standard Couette
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R Rin out

t=0ms

t=67ms

Rs

Figure 6.2: Two pictures from experiments using bird seeds filled to a height
H = 10 mm. The lower picture is taken t = 67 ms after the first one. The split is
located at Rs = 65 mm, marked in the pictures by arrows. Note that all material
between Rin and Rs is shifted upwards, whereas the seeds the the right of Rs remain
(approximately) stationary.

geometry. To obtain rough boundaries, two methods have been employed.
The simplest method is to glue grains, similar to those used in the bulk, to
the outer wall, inner cylinder and bottom rings. However, for wall-localized
shear bands we find that the glue is not strong enough, and gradually the
glued particles come off the inner cylinder. In addition, the fact that we
want to study many different types of particles makes this procedure very
cumbersome. Therefore we have made new inner cylinders where 5 mm deep
grooves were cut along the vertical direction of the cylinder. Grains then fill
up the space between the grooves and the net result is a boundary that is
rough on the order of the grains scale.

The inner cylinder is driven by a DC motor and its rotation speed is
controlled by duty cycle modulation under control of a feedback loop. As
a result, its rotation speed remains essentially constant even though the
exerted torque, due to fluctuations in the material, is varying. Some vibra-
tions are transferred to the granulates as a result, but these appear small
compared to the vibrations induced by the shearing of the material itself.
For the rotation rates possible with this setup the flow has been verified to
be rate independent and centrifugal forces are negligible. For simplicity, the
same rotation rate Ω = 0.17 rad/s is employed in all measurements.

The lower row in Figure 6.1 illustrates the surface flow in this setup for
a H = 10 mm layer of 1 mm glass beads. Here two stripes of 1 mm black
particles have been added to the surface layer for illustrative purposes.

The surface motion of the grains are captured with an 8-bit Sony VLFD-
500 digital camera with frame rates up to 30 frames per second. The camera
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is controlled by Labview which is also used for the data analysis. Halogen
spots are used to illuminate the surface layer. Each picture captures the
cross section of the surface layer from the inner to the outer cylinder. Figure
6.2 shows two typical pictures from an experiment with bird seeds using the
inner cylinder with radius Rin = 40 mm. The split is located at Rs = 65 mm.
The dimensions of these snapshots are 40x640 pixels, which corresponds to
a spatial resolution of 0.11 mm/pixel.

The velocity profile is obtained by a variation on particle image velocime-
try (PIV). From the movies of the surface of the granulate, the angular cor-
relation function as function of r is determined for pairs of frames separated
by ∆t. Averaging over many pairs (typically 2000) and determining the
peak of the correlation function results then in the average azimuthal grain
motion over ∆t, from which the angular velocity can be determined. This
dimensional quantity is then non-dimensionalized by dividing by Ω, so that
we end up with ω(r) ranging from zero (no motion) to one (co-moving with
rotating cylinder.

To obtain high precision values for the velocity profiles, pictures are taken
with three different time intervals for every measurement, ∆t = 33.33 ms,
∆t = 1033 ms, and ∆t = 10031 ms, collecting a total of 2000 snapshots for
each ∆t. In some cases, e.g. for very large particles, up to 7000 snapshots of
dimension 60x640 pixels are taken. The longer time intervals give a better
resolution of the particle motion in the slow-moving tail, since the grains
have traveled further between two successive images. The three profiles
are merged into one by simple rescaling according to the difference in ∆t
between two measurements. In this manner, ω can be obtained over roughly
six decades.

We will perform experiments with grains of different shapes and poly-
dispersities. Table 6.1 shows the names of the different materials available,
together with our estimates of their actual average grain size 〈dp〉. The bird
seeds are rather peculiar, as they consist of a mixture of round (r ∼ 2 mm)
and elongated (dimension ∼ 2 × 5 mm) grains (see also Figure 6.2).

6.3 Split-bottomed geometry

In Figure 6.3 we present an example of typical velocity profiles obtained
for the split-bottomed geometry with Rs = 65 mm and Ri = 40 mm, for
various filling heights of glass beads of size 0.875 mm. For intermediate
filling levels (H � 30 mm) the shear band is not in contact with any of the
walls and the profiles resemble the universal profiles found in the original
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Figure 6.3: Angular velocity profiles measured in the split bottomed geometry at
various filling heights H. The velocity at the inner cylinder is normalized to unity.
At intermediate filling heights H < 35 mm the shear band is located in the bulk,
which is denoted the universal regime. Its center position moves towards the inner
cylinder and its width grows as H is increased. For filling heights H > 35 mm the
shear bands reaches the inner cylinder and a smooth transition towards the wall
collapsed regime takes place as H is increased.
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material 〈dp〉
0.875 mm glass beads 0.9 mm

1 mm glass beads 1.2 mm
2 mm glass beads 2.4 mm
3 mm glass beads 3.2 mm
4 mm glass beads 4.0 mm
5 mm glass beads 5.0 mm
6 mm glass beads 6.0 mm

1.3 mm plastic flakes 1.3 mm
2.3 mm grind sand 2.3 mm

bird seeds 2.0 mm × 5.0 mm

Table 6.1: Estimated values of the average grain size 〈dp〉 for the different materials
used here.

experiments [4, 5]. By increasing H the shear band location moves closer to
the inner cylinder. At some point (H ≈ 35 mm) the shear band comes into
contact with it and a further increase of H results in a transition towards
a profile similar to what is measured in a standard Couette cell. This we
denote the wall collapsed regime: the shear band is located next to the
rotating inner cylinder and the velocity profile immediately decreases with
r.

Let us first discuss the results in the universal bulk regime, where the
shear band is not in contact with the inner cylinder. Measurements have
been performed with spherical, smooth glass beads ranging from 〈dp〉 = 0.9
mm to 2.4 mm, irregularly shaped plastic flakes with sizes dp = 1.3 ± 0.3
mm, and bird seeds consisting of a mixture of round (diameter ∼ 2 mm)
and elongated grains (width ∼ 2 mm, length ∼ 5 mm). For all materials we
find velocity profiles that shows excellent agreement with the error-function
given by equation (6.2). The universality of the profiles in this regime is
illustrated in Figure 6.5, where the position is renormalized according to λ =
(r−Rc)/W . Here all profiles collapse onto the same curve and no difference is
found between approximately monodisperse and irregularly shaped particles
as reported in [2] for shear bands in Couette cells. Instead we find that
shear bands away from lateral boundaries are universal and independent of
the grains, consistent with [4, 5].

To quantify the error between the measured shift of the shear zone center
position Rc away from the split radius Rs we introduce the non-dimensional
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Figure 6.4: Fitting the velocity profiles measured in the split bottomed setup
using glass particles of average size 0.875 mm filled to a height H = 10 mm (a) and
H = 110 mm (b) to a tangent hyperbolic (dotted line) and error-function (dashed
line) shaped curves. In the universal regime (a) the measured profiles fits well to the
error-function, while the tangent hyperbolic only captures the profile well for the
first decade. Entering the wall collapsed regime (b) the opposite scenario is found:
now the measured profiles agree very well with the tangent hyperbolic, while the
error-function decays too quickly after about a decade.
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Figure 6.5: Universal bulk velocity profiles obtained for different particles and
filling heights, plotted as a function of the rescaled coordinate λ = (r − Rc)/W .
The solid line represents an error-function.

parameter κ:

κ =
Rc − R∗

c

|Rs − R∗
c |

. (6.4)

Here R∗
c denotes the theoretical location of the shear zone center given by

equation (6.3). Table 6.3 shows these quantities together with the width of
the shear zone as measured in the universal regime for the different materials.
The error κ is quite large for H = 10 mm where the difference between the
location of the split Rs = 65 mm and the predicted location of the center of
the shear zone is very small (0.60 mm), but becomes small for larger H, as
expected.

We now turn our attention to the shear bands localized near the inner
cylinder. Here the measured velocity profiles decay approximately exponen-
tially for large r, which comes out as a straight line in the log-scale plots.
The velocity profiles are not purely exponential, in particular, for small r.
We found that in good approximation the wall-localized velocity profiles
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Figure 6.6: The tails of velocity profiles measured in the split bottomed setup
for the shear zone located at the inner wall (a)-(b), and in the bulk (c). The left
column shows the raw data for (a) H=110 mm, and (c) H=30 mm. In the right
column these data sets are divided by equation (6.6); in (a) and (c) we divide by
pure exponential ∼ exp(−br), while in (b) we keep b fixed at 0.668, and include a
Gaussian correction c.
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material H [mm] R∗
c [mm] Rc [mm] κ W [mm]

0.875 mm glass 10 64.40 63.02 2.3 4.17
0.875 mm glass 30 55.59 54.30 0.14 8.49

1 mm glass 10 64.40 63.56 1.40 4.51
1 mm glass 30 55.59 56.19 -0.06 8.63
2 mm glass 10 64.40 63.52 1.47 5.60
2 mm glass 30 55.59 57.13 -0.16 10.71

1.3 mm plastic 10 64.40 63.29 1.85 4.15
1.3 mm plastic 30 55.59 54.15 0.15 7.24

bird seeds 10 64.40 63.91 0.82 4.13
bird seeds 30 55.59 54.89 0.07 10.18

Table 6.2: Values for the theoretical prediction of the location of the center position
of the shear zone R∗

c , according to equation (6.3), the measured center position Rc,
the error κ, defined by equation (6.4), and the width of the shear zone W , for
different materials in the universal regime.

approach a tangent hyperbolic shaped curve:

ω(r) = −C tanh
(

r − Rc

W

)
+ C . (6.5)

In Figure 6.4 we compare the fits of this equation and the Gaussian form
(equation (6.1)) to the data for H = 30 mm and H = 110 mm. One clearly
sees the difference between the Gaussian and exponential tails for low and
high filling level. In the intermediate regime, as shown in Figure 6.4b, the
fit of the measured ω(r) to the hyperbolic tangent initially only captures the
part close to the inner wall, but gradually extends further and further into
the bulk for higher H.

Of course, we would like to make this more precise, since one can already
see some Gaussian-like curvature in the “exponential” tails. Ultimately,
we wish to fit our data to an equation of the form of (6.1). Since the
polydispersity for some of our mixtures is quite large, we will use a simpler
variant of this fit formula:

ω(r) = ω0 exp
(
−br − c (r − r0)

2
)

, (6.6)

so that b and c remain dimensional and we do not have to “guess” the value
of dp.

Figure 6.6 shows compelling evidence that the nature of the tails changes
qualitatively with height; by dividing out the leading exponential decay,
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and plotting the result, one can get a good idea of the strength of possible
Gaussian corrections. In Figure 6.6a we show ω(r)/ exp(br) for a range of
values of b. Clearly, for appropriately chosen b, the data is fitted well, even
though some rather small curvature can be detected. From the raw data (see
inset of Figure 6.6a) there appears to be a change in slope for ω < 10−6,
i.e., for r larger than 60 mm. We attribute this to the finite resolution
of our velocity detection. The slowest velocity we can detect varies from
dataset to dataset but is roughly of the order 10−5 to 10−6. This change in
apparent slope is also clearly visible in Figure 6.6a. Also, for small r, there
is a substantial deviation from the exponential behavior.

In Figure 6.6a the exponential nature of the tails only holds away from
the inner cylinder and can only be detected in a limited range. This makes
the fitting to equation (6.6) rather difficult. Nevertheless, as we show in
Figure 6.6b, a small Gaussian correction can basically straighten out the
curve. The best fit of the fluctuating part of the middle of the profile to
a horizontal line is obtained for b = 0.668, c = 0.005 and r0 = 52.5; for
r between 45 and 60 mm, where ω(r) ranges from 10−1 to 10−6, the ratio
ω(r)/ exp

(
−br − c (r − r0)

2
)

varies less than 30%. Note that r0 is chosen
in the middle of the fit regime; it should not be taken as a free parameter.
Even at the edge of the regime where this fit is good, i.e., for r = 45 or
60, the quadratic term in the exponent c (r − r0)

2 is equal to 0.78, while
the linear term is 8.35. In addition, c is roughly 100 times smaller than b,
so the Gaussian contribution is three orders of magnitude smaller than the
exponential.

In Figure 6.6c we finally show the ratio between ω(r) for H=30 mm and
a range of exponentials. Clearly, this tail is not close to an exponent, as we
already expected from the errorfunction fits discussed previously.

6.3.1 Convective motion

The surface of the granular material stays fairly flat in the universal regime.
However, for filling levels where the shear zone meets the wall, a surface
crater rapidly develops around the inner cylinder, with a slope close to the
angle of repose. This crater reaches its maximum size for deep layers, i.e.,
in the wall collapsed regime. The sloped surface leads to a radial, inward
component of the average velocity at the surface, and particles are seen to
slide down the slope towards the inner wall.

Since after a while the slope does not grow, a convection roll must be
present, where particles sink down near the wall and rise further away from
the inner cylinder. Indeed, a small heap appears at the outward border of
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the crater which is probably associated with the region where particles rise
to the surface.

The dependency of the surface shape on the location of the shear zone is
in good agreement with previous results [5]. A buried layer of tracer particles
shows no indication of convective behavior in the universal regime using
the split-bottomed geometry. In the Couette geometry, however, previous
experiments have shown that tracer particles do undergo convective motion,
where they progress downwards near the rotating wall until the bottom of
the setup is reached. From there they move away from the rotating wall
into the bulk of the material, where they at some point slowly rise to the
surface [7]. Convection thus only seems important in the wall-collapsed
regime and vanishes in the universal regime. In the worst case, the radial
component of the surface velocity can be up to 30% of the total and we
do not know if and how this affects the azimuthal velocity profiles. In the
remainder of this chapter we will focus exclusively on the azimuthal velocity
ω.

6.4 Wall collapsed shear zones

In this Section we will focus on the wall-collapsed shear bands. We will first
show that in the Couette geometry, ω(r) rapidly converges to an asymptotic,
height independent velocity profile. In addition we will find that the velocity
profile for large heights in the split-bottomed case (see Figure 6.3) is indis-
tinguishable from the asymptotic profile in the Couette geometry. Finally,
we will illustrate our finding that for a wide variety of particles shapes and
polydispersities, the asymptotic velocity profiles ω(r) tend to an exponential
decay away from the inner cylinder.

In contrast to the split-bottomed geometry, where the shear zone pro-
gressively shifts towards the inner wall when H is increased, the shear zone
in the Couette geometry meets the inner wall for any filling level H. In
Figure 6.7 we illustrate that for the Couette geometry the velocity profiles
only weakly depend on height, and that for large filling heights, the veloc-
ity profiles rapidly converge towards a single curve. By comparing ω(r) for
split-bottomed and Couette geometry, we find, for large heights, the profiles
in the split-bottomed setup approach the asymptotic Couette profile. This
is illustrated in Figure 6.8a: here the solid circles represent measurements
from the split-bottomed setup for different H, and the open circles corre-
spond to the asymptotic Couette cell profile, which is also shown separately
in Figure 6.8b. The crossover between universal and wall-collapsed profiles
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Figure 6.7: Velocity profiles measured in the Couette geometry for 0.875 mm glass
beads at different filling height H. In this geometry the shear zone is always located
at the inner cylinder, and the profiles are seen to converge with increasing H onto
a single curve.

is seen to be a progressive evolution towards the narrow shearband. When
the shear zone first starts to localize (H = 50 mm), it only overlaps with the
asymptotic Couette profile close to the inner cylinder. When H is increased,
the overlap extends further and further away from the inner cylinder. In the
wall collapsed regime the velocity profile at the surface is thus found to
be independent of the bottom topography, and it therefore makes sense to
speak of a single, asymptotic profile for large H.

We have measured these asymptotic velocity profiles in the Couette ge-
ometry for grains of various shapes and polydispersities. Figure 6.9 shows
profiles for (a) 1 mm glass beads (smooth, spherical, highly polydisperse),
(b) 3 mm glass beads (smooth, spherical, approximately monodisperse), (c)
1.3 mm plastic flakes (rough, irregularly shaped, highly polydisperse, soft),
and (d) 2.3 mm grind sand (rough, irregularly shaped, highly polydisperse,
hard). Despite the large variation in grain properties, we find that, away
from the inner cylinder, the velocity decays approximately exponentially in
all cases.

To quantify this, we have fitted these velocity profiles to equation (6.6).
However, as is clear from Figures 6.6 and 6.7, the pure exponential tail can
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Figure 6.9: Velocity profiles measured in the Couette geometry for grains of dif-
ferent shape and polydispersity: (a) Polydisperse glass beads (〈dp〉 ∼ 1.3 mm), (b)
Monodisperse glass beads (〈dp〉 ∼ 3.2 mm), (c) Irregular plastic flakes (〈dp〉 ∼ 1.3
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seen to decay approximately exponential away from the inner cylinder, apart from
a narrow region near the side wall, where the profile is curved.
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Figure 6.10: Velocity profiles for glass beads ranging from 〈dp〉 ∼ 1.3 mm to 5.0
mm, in the Couette geometry at filling height H = 60 mm, with an inner cylinder
of radius Rin = 40 mm. (a) The velocity profiles for the larger particles decay
slower than the smaller ones. (b) Here the radial coordinate r − Rin has been
non-dimensionalized with dp; to our surprise, the data collapse is rather poor. (c)
When the radial coordinate is rescaled as (r−Rin)/

√
dp, the data collapse is rather

good.
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material 〈dp〉 b c

0.875 mm glass beads 0.9 mm 0.877 0.013
1 mm glass beads 1.2 mm 0.581 0.004
2 mm glass beads 2.4 mm 0.465 0.003
3 mm glass beads 3.2 mm 0.319 −0.003
4 mm glass beads 4.0 mm 0.338 −0.002
5 mm glass beads 5.0 mm 0.344 −0.001
6 mm glass beads 6.0 mm 0.149 −0.003
1.3 mm plastic flakes 1.3 mm 0.739 0.001
2.3 mm grind sand 2.3 mm 0.621 0.006

Table 6.3: Values obtained by fitting equation (6.6) to the velocity profiles in the
range ω(r) = [10−1, 10−5], measured for the inner cylinder with size Ri = 40 mm
(see text).

material 〈dp〉 b c

0.875 mm glass beads 0.9 mm 0.545 −0.001
1 mm glass beads 1.2 mm 0.903 0.005
2 mm glass beads 2.4 mm 0.574 −0.001
3 mm glass beads 3.2 mm 0.437 −0.005
4 mm glass beads 4.0 mm 0.332 −0.001
5 mm glass beads 5.0 mm 0.260 0.003
6 mm glass beads 6.0 mm 0.372 −0.005

Table 6.4: The parameters acquired by fitting the experimental data in the range
ω(r) = [10−1, 10−5] to equation (6.6), for the inner cylinder sized Ri = 20 mm.

be observed for a limited range in r only. Very close to the inner cylinder,
wall effects apparently lead to the bending of the velocity profile, and far
away from the cylinder, when ω becomes less than 10−5 ∼ 10−6, our data
becomes dominated by noise. We have therefore, for all data sets, limited
the range of r such that 10−5 < ω(r) < 10−1. We then first take the log of ω
(since we do not want to let our fits be dominated by the largest values of ω),
and then fit log ω(r) to a quadratic expression: log(ω(r)) = a−br−c(r−r0)2,
where r0 is chosen in the middle of the fitting range. The results of these
fits, for Rin = 40 mm and 20 mm are shown in Tables 6.3 and 6.4. For all
particles we find that c is typically two orders of magnitude smaller than b:
the tails are in this regime, in very good approximation, pure exponential.
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This may appear to contradict the findings in [2], where the profiles for
irregularly shaped, polydisperse grains were found to be purely Gaussian.
However, in [2] only the first one to two decades where studied, and it is pre-
cisely there that we also see some rounding of the curves. Notice that in [2],
layering effects present for monodisperse, spherical grains where suggested
as an explanation for the exponential tails. Away from the side wall and for
polydisperse or rough particles, such layering effects should be weak, and
it was argued that in this case Gaussian tails would be observed [2]. This,
however, is in contrast to our findings, and the question what determines
the functional shape of tails of shear zones is open, in particular because in
the bulk always Gaussian tails are found.

In conclusion: for a wide range of particles sizes and geometries, wall
collapsed shear bands exhibit exponential tails away from the wall. There-
fore, a single number, the decay exponent b, characterizes the main features
of these shear bands. In the next Section we will study how this decay
exponent varies with particle size and experimental geometry.

6.5 Scaling of wall-collapsed shear bands

From Figure 6.9(a-b) it is clear that the decay of the velocity profiles depends
on particle size: ω(r) decays faster for smaller particles. Table 6.3 confirms
this observation for the glass beads with 〈dp〉 ranging from 0.9 mm to 3.2
mm, where the exponential prefactor b decreases with particle size, while
the Gaussian one c remains approximately constant.

What length scales are present that could influence the spatial decay rate
b of the wall-collapsed shear bands? The height of the layer does not play a
role, and neither does the location of the split (if present), so that leaves the
average particle size 〈dp〉 and radius of the inner cylinder Rin as the most
obvious length scales. For the wide shear zones in the bulk, the width was
shown to be independent of Rin and Rs. For the narrow shear bands studied
here, this is certainly what one would expect, since their decay is fast and
appears to be on the grain scale. The relatively large radius of curvature
could be expected to be irrelevant, and 〈dp〉 would then be the only relevant
length scale.

In Figure 6.10a we plot the profiles measured in the Couette geometry
for glass beads with 〈dp〉 ranging roughly from 1.2 to 5.0 mm. Figure 6.10b
shows that the naive expectation that the decay of ω(r) would scale with
particle size, i.e., that plotting the data as function of ω((r−Rin)/dp) would
yield a universal master curve, is not correct. The rescaling of the radial
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coordinate with dp strongly overestimates the change in the decay rate b with
dp. To our great surprise, plotting the data as function of the rescaled radial
coordinate (r −Rin)/

√
dp causes the data to collapse quite convincingly, as

shown in 6.10c. The only reasonable conclusion appears to be that there is
an additional length scale in the problem that is relevant for these profiles;
as discussed above, Rin could also play a role. From dimensional analysis it
then follows that one then would expect that ω(r/(dζ

pR
1−ζ
in )) should collapse,

and the previous analysis suggests that ζ ≈ 0.5.
To check whether the value of the inner radius indeed influences the

asymptotic decay, we have constructed two other inner cylinders, one with
Rin = 20 mm and one with Rin = 2.5 mm. Figure 6.11 shows profiles for (a)
1 mm and (b) 2 mm glass beads obtained for two different inner cylinders,
Rin=20 mm and 40 mm. Rescaling the radial coordinate with the square
root of the inner cylinder and plotting ω((r − Rin)/

√
Rin), causes a good

collapse of the curves for different Rin, as illustrated in Figures 6.11c-d for
1 mm and 2 mm glass beads respectively.

In the previous pictures we have shown that the spatial decay rate scales
with the square root of both dp and Rin. Combining these two findings, the
proper non-dimensional radial coordinate x should be takes as:

x :=
r − Rin√
Rin × dp

. (6.7)

Figure 6.12 shows the resulting data collapse of ω(x).
This result can be interpreted as follows. Clearly, when both parti-

cle size and shear cell geometry would be diluted, the resulting decay rate
should scale trivially. Hence, the scaling above can be rewritten as x =
(r − Rin)/(dp × √

Rin/dp), where Rin/dp is the non-dimensional radius of
curvature. Apart from this curvature, ω scales trivially with dp. What is
puzzling is that if this result also holds in the limit of straight sidewalls,
where rin → ∞, the exponential decay rate would go to zero. The limit of
very small Rin is also of interest. In Figure 6.13a we show that for small
inner radius Rin = 2.5 mm, the spatial decay rate is even larger, although
the scaling with

√
Rin does not hold here anymore; indeed since particle size

and radius of curvature are comparable, its unclear what happens here.
A final comment that can be made, is that even though so far we have

taken Rin as determining the radius of curvature, strictly speaking, one
should use the local value of r. As a result, for large particles and small
values of Rin, one may even expect to see a gradual variation of the ex-
ponential decay rate. In Figure 6.13b, we show data for Rin = 2.5 mm
and for increasingly large particles. Indeed, the spatial decay rate appears
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Figure 6.11: Velocity profiles for 1 mm and 2 mm glass beads for inner cylinders
with Rin = 20 mm and 40 mm. (a-b) For both particle sizes, the velocity profile
decays fastest for the smallest inner cylinder. (c-d) By rescaling the radial coordi-
nate with the square root of the size of the inner cylinder, the two curves collapse
onto a single curve.
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first three decades.

to diminish for increasing r, leading to the upward curving of the velocity
profiles.

6.6 Conclusion and discussion

In this Chapter, both wide shear bands in the bulk and narrow shear bands
forming near the inner cylinder of Couette-like rheometers have been studied
in detail. The main new findings are the robustness of the exponential
tails of the wall collapsed shear bands, and the surprising scaling of the
corresponding spatial decay rate.

There are two possible caveats. First of all, there is a substantial con-
vection roll present for the wall collapsed shear bands, and we do not know
what its effect is on the velocity profiles, and in particular their tails. It is
difficult to control this convection, although we are planning experiments
with various surface treatments of the rough inner cylinder. The vertical
grooves employed here could enhance convection, while completely rough
surface may suppress is; this is left for further work.

Secondly, the measurements of ω over almost six decades are technically
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convoluted. Preliminary investigations indicate that deep in the tail regime,
i.e. for small values of ω, fluctuations are relatively strong. It is not clear
how strong these fluctuations influence the measured values of ω when these
are of the order 10−4 or less.

To investigate the role of both the convection and the fluctuations fur-
ther, one could imagine tracking (colored) particles in the regime where ω
approaches zero. Their motion will give detailed information on the radial
component, on the fluctuations, and finally also on the average value of the
azimuthal velocity, which then can be compared to the values obtained by
our PIV method.
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Chapter 7

Conclusion

In this thesis we have explored granular media that are driven in a variety of
manners. Chapters 2-4 deal with compartmentalized, vibrofluidized granular
gases, Chapter 5 deals with impact of a heavy object on fine sand, and
Chapter 6 concerns the slow flow of granular media in shear cells.

The findings described in Chapter 3, which concerns a numerical study of
the role of fluctuations in compartmentalized granular gases, can be summa-
rized as follows. First of all, the statistical fluctuations profoundly influence
the clustering behavior of a compartmentalized granular gas. As long as
the number of particles N is sufficiently large, the clustering still largely fol-
lows the lines of a standard second-order phase transition (i.e., a pitchfork
bifurcation with critical exponent β = 1/2). For smaller N , however, the
enhanced influence of statistical fluctuations breaks the mean-field behav-
ior. We demonstrated this by means of bifurcation diagrams and also via
the diverging correlation time at the clustering transition.

In order to model the fluctuations in our system, we constructed a map-
ping describing the particle exchange between two compartments per shak-
ing cycle, in which the mean-field flux and the fluctuations appear as two
separate terms. This separation enables us to directly compare the relative
importance of both contributions to the dynamics and to study how the
fluctuations start to dominate for decreasing particle number N . Our re-
sults show that already at N = 300 (i.e., much less than the 1023 particles
of textbook statistical physics) mean-field results and the Eggers flux theory
hold very nicely. Only for smaller N does the finite-number noise start to
dominate, and the mean-field description breaks down.

In Chapter 4, clustering in bidisperse granular gases was studied. The
main conclusion of this work is that experiment, theory, and numerics all
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agree on the phenomenon of competitive clustering in a bidisperse granular
gas: The clustering can be directed either towards the compartment initially
containing the majority of the large particles (type-I clustering) or to the one
containing mainly small particles (type-II) simply by adjusting the shaking
strength.

The best quantitative agreement with the theoretical flux model is found
when the size ratio between the large and small particles is not too much
larger than 1. This can be traced back to the fact that in the model the gran-
ular temperatures of the different species are assumed to be equal, which is
an accurate assumption only when these particles have similar sizes. Since
the region of competitive clustering is found to move closer and closer to-
wards this limit when we let the number of large particles grow, this means
that the theory works best for comparatively large numbers of large parti-
cles.

In Chapter 5, we studied the impact of a heavy sphere on a loosely packed
bed of fine sand. This results in the formation of a splash and a jet which
rises straight up into the air. The jet is created as the crater formed by the
impact collapses due to the sand pressure. For a sufficiently high impact
velocity we find that air is entrained beneath the surface. This entrained air
bubble then slowly rises to the surface where it causes a granular eruption.
We have described the void collapse by a simple Rayleigh-type model, and
found good agreement with experimental findings.

In Chapter 6 both wide shear bands in the bulk and narrow shear bands
forming near the inner cylinder of Couette-like rheometers have been studied
in detail. The main new findings all concern the wall collapsed shear bands.
We have shown how, for the split-bottomed geometry, the profiles exhibit
a sharp crossover between the asymptotic wall profile for small radii, and a
less steep decay for large radii. The asymptotic profiles for split-bottomed
and ordinary Couette cells were found to be equal. This leads to the first
main conclusion that for sufficiently deep layers, the velocity profile of wall-
collapsed shear bands does not depend on the bottom topography.

Moreover, we have found that for a wide variety of particle shapes and
polydispersities, the asymptotic velocity profiles tend to an exponential de-
cay away from the inner cylinder. This contrasts earlier work, which sug-
gested that only when layering effects are present an exponential tail is
found. And in turn, layering effects would only occur for monodisperse,
spherical particles. Interestingly, in our setups we can obtain both Gaussian
and exponential tails, independent of particle shape or polydispersity.

The exponential tails can be characterized by a single number, the spatial
decay rate. We found that the decay rate does not only depend on particle
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size, but also on the radius of curvature. This contradicts a large body
of generally accepted evidence in the literature on granular shear bands,
and questions what will happen in geometries where the curvature can be
neglected.

The above results can all be translated to practical problems, and to pos-
sible solutions. The clustering experiments in compartmentalized systems
are relevant for industrial conveyor belts and sorting machines. Our results
may be useful to develop production lines in which granular clustering is
minimized. Also the demixing of granular mixtures described in Chapter
4 is a major problem in numerous industries that depend on well-mixed
granulates. Based on our results, mixers can be made more efficient if they
can adjust the shaking strength to the local distribution of large and small
particles, thus taking advantage of the competitive clustering effect. Gran-
ular jets, as described in Chapter 5, may be relevant to processes occuring
in nature, such as meteorite impacts. It is conceivable that the material
ejected by impacts (via the enormously upscaled splash and jet) contributes
significantly to the exchange of matter between planets.

Finally the onset of shearing motion, as described in Chapter 6, is of
paramount importance in understanding how landslides and avalanches are
triggered. Knowing the fundamental characteristics of granular shear flows
may be essential in detecting potential shear bands, and thus contribute to
the development of improved warning systems.
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Summary

Granular media, such as sand, flour and boulders, exhibit strongly energy
dissipating interactions. Indeed, a marble thrown into a bucket of marbles
does not bounce back, and a pile of sand at rest does not exhibit any
dynamics. Therefore, to see some interesting dynamics, energy has to be
supplied to these systems. In this thesis, three different methods of energy
input are explored: shaking, impacting, and shearing.

To study clustering in granular gases in a controlled fashion, grains are
put into a container divided into two compartments by a wall (see Chapter
2). When this container is shaken violently, the grains jump around inside
the container, colliding with the walls and each other. When the shaking
strength is reduced below a certain critical value, a peculiar phenomenon can
be witnessed: the grains begin to accumulate into one of the compartments.
Hence, the symmetric distribution of particles found for violent shaking, in
which both compartments contain an approximately equal number of grains,
gives way to an asymmetric particle distribution. This can be understood
as follows: Collisions between grains are inelastic, and energy is dissipated
in every collision. At reduced shaking strengths the energy input from the
vibrating bottom is not able to overcome this energy dissipation. As a
result, any fluctuation whereby one compartment becomes slightly more
densely populated, causes more energy to be dissipated here; the density
will increase further and particles will find it difficult to escape. Ultimately,
this leads to the formation of a stable asymmetric particle distribution.
This clustering behavior is well described by a theoretical flux model, which
expresses the particle flux as function of the numbers of particles in the
compartments and the shaking strength.

For a large number of particles in the system, the transition to the
clustered state is smooth and continuous. In Chapter 3 the effect of lowering
the total number of particles in the system on the clustering transition is
studied. For small number of particles, fluctuations in the particle flux
between the two compartments become strong, and at some point the mean-
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field behavior of the transition is overwhelmed by the fluctuations.
The clustering behavior of a bi-disperse mixture of particles, i.e, a mixture

of particles of two different sizes, is studied in Chapter 4. Depending on
the initial particle distribution, such a mixture is experimentally found to
cluster competitively: By tuning the shaking strength, the clustering can be
directed either towards the compartment initially containing the majority of
the large particles or to the one containing the majority of the small particles.
These findings have been verified in molecular dynamics simulations and in
an extended, bi-disperse version of the flux model.

Chapter 5 is on the mode of energy input through impact: When a heavy
sphere falls onto a loose bed of sand, a splash is formed above the surface.
Then a narrow jet rises straight up into the air. This phenomenon is studied
in detail by performing experiments for different impact velocities. We found
that the sequence of events is as follows. First, the sphere penetrates down
into the sand. This forms a cylindrical crater which then collapses due
to the sand pressure. The inward flowing sand then focuses into two jets,
one upward and one downward. The former reaches heights exceeding the
release height of the sphere. For high impact velocities the crater collapses
long before the sphere comes to a standstill, and air is entrained below the
surface. This air bubble slowly rises towards the surface where it causes a
granular eruption.

Finally, if an external stress is imposed on a dense granular medium,
it does not flow as a normal fluid would do under the same conditions.
Instead a narrow shear band is formed where the material yields and flows,
while the rest of the material remains solid-like and barely deforms. The
differences between shear bands located in the bulk and near a wall are
studied in Chapter 6, with emphasis on the transition between the two
regimes. For shear bands in the bulk the tails of the velocity profiles are
found to follow a Gaussian profile, while wall-localized shear bands are found
to decay exponentially away from the wall. Surprisingly, the spatial decay
rates of the exponential tails do not simply scale with particle size, but
also the radius of curvature is found to play an important role, challenging
accepted views on shear bands.



Samenvatting

Granulaire materialen, zoals zand, meel en keien, vertonen een wisselwerking
die sterk dissipatief is. Zo zal een knikker die in een zak met knikkers valt
niet terug stuiteren, en een hoop zand blijft gewoon rustig liggen zonder
vormverlies. Om interessante dynamica te zien in deze systemen moet
men er energie aan toevoegen. In dit proefschrift worden drie verschillende
manieren van energietoevoer beschouwd: schudden, een inslag van buitenaf,
en het aanbrengen van een afschuifspanning.

Teneinde het clustergedrag in granulaire gassen te bestuderen, doen we
enkele honderden kogeltjes in een vat, dat door middel van een lage wand
verdeeld is in twee gelijke compartimenten (zie Hoofdstuk 2). Wanneer het
vat heftig geschud wordt, vliegen de kogeltjes alle kanten op, voortdurend
botsend met de wanden en met elkaar. Dit is een granulair gas. Wanneer nu
de schudsterkte omlaag geschroefd wordt tot onder een bepaalde kritische
waarde neemt men een merkwaardig fenomeen waar: de kogeltjes verzamelen
zich in n enkel compartiment. Dat wil zeggen, de verdeling van de deeltjes
over de twee compartimenten wordt asymmetrisch. Dit is een gevolg van
het feit dat de botsingen tussen de kogeltjes niet volkomen elastisch zijn;
bij elke botsing gaat een gedeelte van de kinetische energie verloren. Bij
lage schudsterkte is de energietoevoer van de trillende bodem niet meer
voldoende om dit energieverlies te overstemmen. Een kleine fluctuatie in
de verdeling, waarbij het ene compartiment wat meer deeltjes bevat dan
het andere, betekent dat er in het eerste compartiment meer botsingen
plaatsvinden en dus meer energie verloren gaat. De kogeltjes worden daar
dus langzamer en ontsnappen minder gemakkelijk uit het compartiment,
met als resultaat dat de dichtheid nog verder omhoog gaat. Dit leidt
uiteindelijk tot stabiele, asymmetrische dichtheidsverdeling over de twee
compartimenten: een cluster van langzame deeltjes in het eerste comparti-
ment, en slechts enkele (maar veel snellere) deeltjes in het tweede comparti-
ment. Deze clustering is uitstekend te beschrijven met een theoretisch
fluxmodel, dat de deeltjesstroom van het ene naar het andere compartiment
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uitdrukt als functie van het aantal deeltjes in het compartiment en de
schudsterkte.

Als het aantal kogeltjes in het systeem voldoende groot is, verloopt de
overgang naar de geclusterde toestand precies volgens de mean field theorie
van faseovergangen. In Hoofdstuk 3 wordt bestudeerd hoe dit verandert
naarmate het aantal deeltjes kleiner wordt gemaakt. Voor kleine deeltjes-
aantallen wordt de invloed van statistische fluctuaties in de flux steeds
groter, en tenslotte gaat het mean field gedrag verloren in de ruis.

In Hoofdstuk 4 beschouwen we een bidispers mengsel van grote en kleine
kogeltjes. Uit onze experimenten blijkt dat de clustering in een dergelijk
mengsel competitief is: Afhankelijk van de schudsterkte zullen de deeltjes
clusteren in het compartiment dat aanvankelijk de meeste grote kogeltjes
bevat of in het compartiment met de meeste kleintje kogeltjes. Deze ver-
rassende experimentele uitkomst wordt bevestigd en nader uitgewerkt door
middel van moleculaire-dynamica simulaties en via een uitgebreide, bidisper-
se versie van het fluxmodel.

In Hoofdstuk 5 richten we onze aandacht op een andere wijze van energie-
toevoer, wanneer we een metalen kogel op een bed van losgewoeld zand laten
vallen. Bij de inslag is eerst een splash te zien, bestaande uit zandkorrels die
weggeslingerd worden vanuit het centrale punt van inslag, en kort daarna
schiet een jet van zand loodrecht de lucht in. We leggen dit in detail vast met
behulp van een hoge-snelheidscamera, voor verschillende inslagsnelheden van
de kogel. De volgorde van de gebeurtenissen is als volgt: Eerst boort de kogel
zich in het zand, en vormt daarbij een cilindrische krater die daarna weer
ineenklapt onder invloed van de druk in het zand. Op de as van de krater
vormt zich een drukmaximum en het toestromende zand wordt omhoog en
omlaag geperst in de vorm van twee jets. De omhoog gerichte jet komt
in onze experimenten altijd hoger dan de hoogte waarvan de kogel wordt
losgelaten.

Voor hoge inslagsnelheden sluit de krater zich al voordat de kogel tot
stilstand komt, en dit betekent dat er een flinke hoeveelheid lucht ingevangen
wordt tussen het punt waar de krater zich sluit en de kogel. Deze lucht
stijgt, in de vorm van een bel, omhoog door het zand en veroorzaakt bij het
bereiken van de oppervlakte een eruptie die doet denken aan kokend water,
of zelfs een vulkaan.

Tot slot wordt in Hoofdstuk 6 de reactie van een granulair medium op
een externe afschuifspanning bestudeerd. Het gedrag blijkt heel anders te
zijn dan voor een gewone vloeistof. Er vormt zich een smalle shear band
waarbinnen het materiaal meegeeft aan de afschuifspanning en gaat stromen,
terwijl de rest vrijwel volledig in rust blijft en nauwelijks vervormt. We



richten ons in het bijzonder op de verschillen tussen de shear bands in het
midden van het medium en die vlak bij de wand, en bestuderen de overgang
tussen deze twee regimes. De shear bands in het midden van het medium
vertonen een snelheidsprofiel met een zogenaamde Gaussische staart, en die
vlakbij de wand hebben een exponentile staart. Verrassend genoeg schaalt
deze exponentile staart niet alleen met de grootte van de granulaire deeltjes,
zoals algemeen werd aangenomen in de literatuur over shear bands, maar
daarnaast blijkt ook de kromtestraal van het systeem een belangrijke rol te
spelen.
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